Joint estimation of fast-updating state and intermittent-updating state

Hang Geng, Yan Liang, C. Wen, Yonggang Chen
{"title":"Joint estimation of fast-updating state and intermittent-updating state","authors":"Hang Geng, Yan Liang, C. Wen, Yonggang Chen","doi":"10.1109/IConAC.2016.7604886","DOIUrl":null,"url":null,"abstract":"This paper formulates a joint estimation problem of fast-updating state and intermittent-updating state in multi-rate systems. The original multi-rate system is first transformed into a single-rate one. Since the direct use of Kalman filtering method on the lifted system will result in the Kalman smoother, the causality constraints must be taken into account in the filter design. Then, based on the lifted system a multi-rate filter (MRF) with causality constraints is derived in the linear minimum mean squared error (LMMSE) sense using the orthogonality principle. A numerical example is given to show the effectiveness of the proposed filter.","PeriodicalId":375052,"journal":{"name":"2016 22nd International Conference on Automation and Computing (ICAC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConAC.2016.7604886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper formulates a joint estimation problem of fast-updating state and intermittent-updating state in multi-rate systems. The original multi-rate system is first transformed into a single-rate one. Since the direct use of Kalman filtering method on the lifted system will result in the Kalman smoother, the causality constraints must be taken into account in the filter design. Then, based on the lifted system a multi-rate filter (MRF) with causality constraints is derived in the linear minimum mean squared error (LMMSE) sense using the orthogonality principle. A numerical example is given to show the effectiveness of the proposed filter.
快速更新状态和间歇更新状态的联合估计
提出了多速率系统中快速更新状态和间歇更新状态的联合估计问题。最初的多费率制首先转变为单费率制。由于对提升系统直接使用卡尔曼滤波方法会使卡尔曼平滑,因此在滤波器设计中必须考虑因果约束。在此基础上,利用正交性原理推导出线性最小均方误差(LMMSE)意义上具有因果约束的多速率滤波器(MRF)。算例表明了该滤波器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信