Models of Artificial Multi-Polynomial Higher Order Neural Networks

{"title":"Models of Artificial Multi-Polynomial Higher Order Neural Networks","authors":"","doi":"10.4018/978-1-7998-3563-9.ch002","DOIUrl":null,"url":null,"abstract":"This chapter introduces multi-polynomial higher order neural network models (MPHONN) with higher accuracy. Using Sun workstation, C++, and Motif, a MPHONN simulator has been built. Real-world data cannot always be modeled simply and simulated with high accuracy by a single polynomial function. Thus, ordinary higher order neural networks could fail to simulate complicated real-world data. But MPHONN model can simulate multi-polynomial functions and can produce results with improved accuracy through experiments. By using MPHONN for financial modeling and simulation, experimental results show that MPHONN can always have 0.5051% to 0.8661% more accuracy than ordinary higher order neural network models.","PeriodicalId":236860,"journal":{"name":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","volume":"20 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-3563-9.ch002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter introduces multi-polynomial higher order neural network models (MPHONN) with higher accuracy. Using Sun workstation, C++, and Motif, a MPHONN simulator has been built. Real-world data cannot always be modeled simply and simulated with high accuracy by a single polynomial function. Thus, ordinary higher order neural networks could fail to simulate complicated real-world data. But MPHONN model can simulate multi-polynomial functions and can produce results with improved accuracy through experiments. By using MPHONN for financial modeling and simulation, experimental results show that MPHONN can always have 0.5051% to 0.8661% more accuracy than ordinary higher order neural network models.
人工多多项式高阶神经网络模型
本章介绍了精度更高的多多项式高阶神经网络模型(MPHONN)。利用Sun工作站、c++语言和Motif语言,构建了MPHONN仿真程序。现实世界的数据不可能总是简单地建模,并通过单个多项式函数进行高精度模拟。因此,普通的高阶神经网络可能无法模拟复杂的现实世界数据。而MPHONN模型可以模拟多多项式函数,通过实验可以得到精度较高的结果。将MPHONN用于金融建模和仿真,实验结果表明,与普通高阶神经网络模型相比,MPHONN总能提高0.5051% ~ 0.8661%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信