Parametric GLRT for Multichannel Adaptive Signal Detection

K. J. Sohn, Hongbin Li, B. Himed
{"title":"Parametric GLRT for Multichannel Adaptive Signal Detection","authors":"K. J. Sohn, Hongbin Li, B. Himed","doi":"10.1109/SAM.2006.1706163","DOIUrl":null,"url":null,"abstract":"We consider herein the problem of detecting a multichannel signal in the presence of spatially and temporally colored disturbance. A parametric generalized likelihood ratio test (GLRT) is developed by modeling the disturbance as a multichannel autoregressive (AR) process. The parametric GLRT differs from Kelly's widely known GLRT which does not utilize any parametric model for the disturbance signal. Maximum likelihood (ML) parameter estimation underlying the parametric GLRT is examined. It is shown that the ML estimator for the alternative hypothesis is non-linear and there exists no closed-form expression. An alternative asymptotic ML (AML) estimator is presented, which yields asymptotically optimum parameter estimates at a reduced complexity. The performance of the parametric GLRT is studied by considering challenging cases with limited or no training signals for parameter estimation. Such cases (especially when training is unavailable) are of great interest in detecting signals in heterogeneous, fast changing, or dense-target environments. Compared with the recently introduced parametric adaptive matched filter (PAMF) and parametric Rao detectors, the parametric GLRT achieves higher data efficiency, offering improved detection performance in general","PeriodicalId":272327,"journal":{"name":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2006.1706163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We consider herein the problem of detecting a multichannel signal in the presence of spatially and temporally colored disturbance. A parametric generalized likelihood ratio test (GLRT) is developed by modeling the disturbance as a multichannel autoregressive (AR) process. The parametric GLRT differs from Kelly's widely known GLRT which does not utilize any parametric model for the disturbance signal. Maximum likelihood (ML) parameter estimation underlying the parametric GLRT is examined. It is shown that the ML estimator for the alternative hypothesis is non-linear and there exists no closed-form expression. An alternative asymptotic ML (AML) estimator is presented, which yields asymptotically optimum parameter estimates at a reduced complexity. The performance of the parametric GLRT is studied by considering challenging cases with limited or no training signals for parameter estimation. Such cases (especially when training is unavailable) are of great interest in detecting signals in heterogeneous, fast changing, or dense-target environments. Compared with the recently introduced parametric adaptive matched filter (PAMF) and parametric Rao detectors, the parametric GLRT achieves higher data efficiency, offering improved detection performance in general
多通道自适应信号检测的参数化GLRT
在此,我们考虑在存在空间和时间彩色干扰的情况下检测多通道信号的问题。将扰动建模为多通道自回归过程,建立了参数广义似然比检验(GLRT)。参数GLRT与Kelly的GLRT不同,Kelly的GLRT不使用任何参数模型来处理干扰信号。检验了基于参数GLRT的最大似然(ML)参数估计。证明了备择假设的ML估计量是非线性的,不存在封闭形式的表达式。提出了一种备选渐近ML (AML)估计器,该估计器在降低复杂度的情况下产生渐近最优参数估计。通过考虑参数估计训练信号有限或无训练信号的挑战性情况,研究了参数GLRT的性能。在这种情况下(特别是在没有训练的情况下),检测异质、快速变化或密集目标环境中的信号非常有趣。与最近引入的参数自适应匹配滤波器(PAMF)和参数Rao检测器相比,参数GLRT具有更高的数据效率,总体上提高了检测性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信