A First Course in Machine Learning

Simon Rogers, M. Girolami
{"title":"A First Course in Machine Learning","authors":"Simon Rogers, M. Girolami","doi":"10.1201/9781466506299","DOIUrl":null,"url":null,"abstract":"A First Course in Machine Learning covers the core mathematical and statistical techniques needed to understand some of the most popular machine learning algorithms. The algorithms presented span the main problem areas within machine learning: classification, clustering and projection. The text gives detailed descriptions and derivations for a small number of algorithms rather than cover many algorithms in less detail. Referenced throughout the text and available on a supporting website (http://bit.ly/firstcourseml), an extensive collection of MATLAB/Octave scripts enables students to recreate plots that appear in the book and investigate changing model specifications and parameter values. By experimenting with the various algorithms and concepts, students see how an abstract set of equations can be used to solve real problems. Requiring minimal mathematical prerequisites, the classroom-tested material in this text offers a concise, accessible introduction to machine learning. It provides students with the knowledge and confidence to explore the machine learning literature and research specific methods in more detail.","PeriodicalId":359628,"journal":{"name":"Chapman and Hall / CRC machine learning and pattern recognition series","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"187","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chapman and Hall / CRC machine learning and pattern recognition series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781466506299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 187

Abstract

A First Course in Machine Learning covers the core mathematical and statistical techniques needed to understand some of the most popular machine learning algorithms. The algorithms presented span the main problem areas within machine learning: classification, clustering and projection. The text gives detailed descriptions and derivations for a small number of algorithms rather than cover many algorithms in less detail. Referenced throughout the text and available on a supporting website (http://bit.ly/firstcourseml), an extensive collection of MATLAB/Octave scripts enables students to recreate plots that appear in the book and investigate changing model specifications and parameter values. By experimenting with the various algorithms and concepts, students see how an abstract set of equations can be used to solve real problems. Requiring minimal mathematical prerequisites, the classroom-tested material in this text offers a concise, accessible introduction to machine learning. It provides students with the knowledge and confidence to explore the machine learning literature and research specific methods in more detail.
机器学习入门课程
机器学习第一课程涵盖了理解一些最流行的机器学习算法所需的核心数学和统计技术。提出的算法涵盖了机器学习中的主要问题领域:分类、聚类和投影。本文给出了少数算法的详细描述和推导,而不是不太详细地涵盖许多算法。在整个文本中引用并在支持网站(http://bit.ly/firstcourseml)上提供,MATLAB/Octave脚本的广泛集合使学生能够重新创建书中出现的情节,并研究不断变化的模型规格和参数值。通过对各种算法和概念的实验,学生可以看到如何使用一组抽象的方程来解决实际问题。要求最低的数学先决条件,课堂测试的材料在这篇文章提供了一个简洁的,可访问的介绍机器学习。它为学生提供了更详细地探索机器学习文献和研究具体方法的知识和信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信