Proposal of new hybrid fuzzy clustering algorithms — Application to breast cancer dataset

P. Coutinho, T. P. Chagas
{"title":"Proposal of new hybrid fuzzy clustering algorithms — Application to breast cancer dataset","authors":"P. Coutinho, T. P. Chagas","doi":"10.1109/LA-CCI.2017.8285679","DOIUrl":null,"url":null,"abstract":"This paper presents new hybrid fuzzy clustering algorithms. The aims of the proposed modifications are to provide robustness for the initial cluster centers using Subtractive clustering and to reduce the number of iterations using the Fuzzy ckMeans center updating strategy. These modifications are applied in the conventional fuzzy clustering algorithms: Fuzzy c-Means, Gustafson-Kessel and Gath-Geva. The proposed methods are applied to Wisconsin Breast Cancer dataset and results compare the proposed algorithms with their conventional forms considering different validity indices and classification accuracy.","PeriodicalId":144567,"journal":{"name":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI.2017.8285679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents new hybrid fuzzy clustering algorithms. The aims of the proposed modifications are to provide robustness for the initial cluster centers using Subtractive clustering and to reduce the number of iterations using the Fuzzy ckMeans center updating strategy. These modifications are applied in the conventional fuzzy clustering algorithms: Fuzzy c-Means, Gustafson-Kessel and Gath-Geva. The proposed methods are applied to Wisconsin Breast Cancer dataset and results compare the proposed algorithms with their conventional forms considering different validity indices and classification accuracy.
一种新的混合模糊聚类算法的提出——在乳腺癌数据集中的应用
本文提出了一种新的混合模糊聚类算法。所提出的修改的目的是使用减法聚类为初始聚类中心提供鲁棒性,并使用模糊均值中心更新策略减少迭代次数。这些改进应用于传统的模糊聚类算法:fuzzy c-Means、Gustafson-Kessel和Gath-Geva。将所提出的方法应用于威斯康星州乳腺癌数据集,并在考虑不同有效性指标和分类精度的情况下,将所提出的算法与传统算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信