The Ineffectiveness of Domain-Specific Word Embedding Models for GUI Test Reuse

F. Khalili, Ali Mohebbi, Valerio Terragni, M. Pezzè, L. Mariani, A. Heydarnoori
{"title":"The Ineffectiveness of Domain-Specific Word Embedding Models for GUI Test Reuse","authors":"F. Khalili, Ali Mohebbi, Valerio Terragni, M. Pezzè, L. Mariani, A. Heydarnoori","doi":"10.1145/3524610.3527873","DOIUrl":null,"url":null,"abstract":"Reusing test cases across similar applications can significantly reduce testing effort. Some recent test reuse approaches successfully exploit word embedding models to semantically match GUI events across Android apps. It is a common understanding that word embedding models trained on domain-specific corpora perform better on specialized tasks. Our recent study confirms this understanding in the context of Android test reuse. It shows that word embedding models trained with a corpus of the English descriptions of apps in the Google Play Store lead to a better semantic matching of Android GUI events. Motivated by this result, we hypothesize that we can further increase the effectiveness of semantic matching by partitioning the corpus of app descriptions into domain-specific corpora. Our experiments do not confirm our hypothesis. This paper sheds light on this unexpected negative result that contradicts the common understanding.","PeriodicalId":426634,"journal":{"name":"2022 IEEE/ACM 30th International Conference on Program Comprehension (ICPC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 30th International Conference on Program Comprehension (ICPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3524610.3527873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reusing test cases across similar applications can significantly reduce testing effort. Some recent test reuse approaches successfully exploit word embedding models to semantically match GUI events across Android apps. It is a common understanding that word embedding models trained on domain-specific corpora perform better on specialized tasks. Our recent study confirms this understanding in the context of Android test reuse. It shows that word embedding models trained with a corpus of the English descriptions of apps in the Google Play Store lead to a better semantic matching of Android GUI events. Motivated by this result, we hypothesize that we can further increase the effectiveness of semantic matching by partitioning the corpus of app descriptions into domain-specific corpora. Our experiments do not confirm our hypothesis. This paper sheds light on this unexpected negative result that contradicts the common understanding.
特定领域词嵌入模型在GUI测试重用中的有效性
在类似的应用程序之间重用测试用例可以显著减少测试工作。最近的一些测试重用方法成功地利用词嵌入模型在语义上匹配Android应用程序中的GUI事件。人们普遍认为,在特定领域语料库上训练的词嵌入模型在特定任务上表现更好。我们最近的研究在Android测试重用的背景下证实了这一点。它表明,用b谷歌Play Store中应用程序的英语描述语料库训练的词嵌入模型可以更好地匹配Android GUI事件的语义。受此结果的启发,我们假设可以通过将应用描述的语料库划分为特定领域的语料库来进一步提高语义匹配的有效性。我们的实验不能证实我们的假设。本文揭示了这一出乎意料的否定结果与一般认识相矛盾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信