V. Suttichaya, Niracha Eakvorachai, Tunchanok Lurkraisit
{"title":"Source Code Plagiarism Detection Based on Abstract Syntax Tree Fingerprintings","authors":"V. Suttichaya, Niracha Eakvorachai, Tunchanok Lurkraisit","doi":"10.1109/iSAI-NLP56921.2022.9960266","DOIUrl":null,"url":null,"abstract":"Syntax Tree (AST) is an abstract logical structure of source code represented as a tree. This research utilizes information of fingerprinting with AST to locate the similarities between source codes. The proposed method can detect plagiarism in source codes using the number of duplicated logical structures. The structural information of program is stored in the fingerprints format. Then, the fingerprints of source codes are compared to identify number of similar nodes. The final output is calculated from number of similar nodes known as similarities scores. The result shows that the proposed method accurately captures the common modification techniques from basic to advance.","PeriodicalId":399019,"journal":{"name":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP56921.2022.9960266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Syntax Tree (AST) is an abstract logical structure of source code represented as a tree. This research utilizes information of fingerprinting with AST to locate the similarities between source codes. The proposed method can detect plagiarism in source codes using the number of duplicated logical structures. The structural information of program is stored in the fingerprints format. Then, the fingerprints of source codes are compared to identify number of similar nodes. The final output is calculated from number of similar nodes known as similarities scores. The result shows that the proposed method accurately captures the common modification techniques from basic to advance.