GRADE: Gibbs reaction and diffusion equations

Song-Chun Zhu, D. Mumford
{"title":"GRADE: Gibbs reaction and diffusion equations","authors":"Song-Chun Zhu, D. Mumford","doi":"10.1109/ICCV.1998.710816","DOIUrl":null,"url":null,"abstract":"Recently there have been increasing interests in using nonlinear PDEs for applications in computer vision and image processing. In this paper, we propose a general statistical framework for designing a new class of PDEs. For a given application, a Markov random field model p(I) is learned according to the minimax entropy principle so that p(I) should characterize the ensemble of images in our application. P(I) is a Gibbs distribution whose energy terms can be divided into two categories. Subsequently the partial differential equations given by gradient descent on the Gibbs potential are essentially reaction-diffusion equations, where the energy terms in one category produce anisotropic diffusion while the inverted energy terms in the second category produce reaction associated with pattern formation. We call this new class of PDEs the Gibbs Reaction And Diffusion Equations-GRADE and we demonstrate experiments where GRADE are used for texture pattern formation, denoising, image enhancement, and clutter removal.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Recently there have been increasing interests in using nonlinear PDEs for applications in computer vision and image processing. In this paper, we propose a general statistical framework for designing a new class of PDEs. For a given application, a Markov random field model p(I) is learned according to the minimax entropy principle so that p(I) should characterize the ensemble of images in our application. P(I) is a Gibbs distribution whose energy terms can be divided into two categories. Subsequently the partial differential equations given by gradient descent on the Gibbs potential are essentially reaction-diffusion equations, where the energy terms in one category produce anisotropic diffusion while the inverted energy terms in the second category produce reaction associated with pattern formation. We call this new class of PDEs the Gibbs Reaction And Diffusion Equations-GRADE and we demonstrate experiments where GRADE are used for texture pattern formation, denoising, image enhancement, and clutter removal.
等级:吉布斯反应和扩散方程
近年来,人们对非线性偏微分方程在计算机视觉和图像处理中的应用越来越感兴趣。在本文中,我们提出了设计一类新的偏微分方程的一般统计框架。对于给定的应用程序,根据极大极小熵原理学习马尔可夫随机场模型p(I),因此p(I)应该表征我们应用程序中的图像集合。P(I)是吉布斯分布,其能量项可分为两类。随后,由梯度下降给出的吉布斯势的偏微分方程本质上是反应-扩散方程,其中一类的能量项产生各向异性扩散,而第二类的反向能量项产生与图案形成相关的反应。我们将这类新的偏微分方程称为吉布斯反应和扩散方程-GRADE,并演示了将GRADE用于纹理图案形成、去噪、图像增强和杂波去除的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信