Performance Comparison of Genetic Algorithm Operator Combinations for optimization Problems

Ica Kurnia Hildayanti, I. Soesanti, A. E. Permanasari
{"title":"Performance Comparison of Genetic Algorithm Operator Combinations for optimization Problems","authors":"Ica Kurnia Hildayanti, I. Soesanti, A. E. Permanasari","doi":"10.1109/ISRITI.2018.8864469","DOIUrl":null,"url":null,"abstract":"Genetic Algorithm (GA) is a meta-heuristic search algorithms and the process of GA inspired by natural evolution theory. GA has chromosome-forming operators i.e. selection, crossover, and mutation. These operators have different techniques to solve optimization problems. This paper presents performance comparison of 36 combination operators from 4 selection techniques, 3 crossover techniques, and 3 mutation techniques. Combinations of selection, crossover and mutation operators are simulated for optimizing three benchmark function: Rastrigin function, Sphere function, and Exponential Function. The purpose of this study to find suitable combinations of selection, crossover, and mutation technique for each objective function tested. The performance to be analyzed and compared in this study are average iteration, the best value of objective function f(x)/fitness value, xi value, and average time. The result shows that different selection, mutation and crossover have different effectiveness to optimize various objective functions, and for each objective function have different suitable GA operator combination to find the optimal solution.","PeriodicalId":162781,"journal":{"name":"2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI.2018.8864469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Genetic Algorithm (GA) is a meta-heuristic search algorithms and the process of GA inspired by natural evolution theory. GA has chromosome-forming operators i.e. selection, crossover, and mutation. These operators have different techniques to solve optimization problems. This paper presents performance comparison of 36 combination operators from 4 selection techniques, 3 crossover techniques, and 3 mutation techniques. Combinations of selection, crossover and mutation operators are simulated for optimizing three benchmark function: Rastrigin function, Sphere function, and Exponential Function. The purpose of this study to find suitable combinations of selection, crossover, and mutation technique for each objective function tested. The performance to be analyzed and compared in this study are average iteration, the best value of objective function f(x)/fitness value, xi value, and average time. The result shows that different selection, mutation and crossover have different effectiveness to optimize various objective functions, and for each objective function have different suitable GA operator combination to find the optimal solution.
遗传算法算子组合优化问题的性能比较
遗传算法是一种元启发式搜索算法,遗传算法的过程受到自然进化论的启发。遗传算法具有染色体形成算子,即选择、交叉和突变。这些运营商有不同的技术来解决优化问题。本文对4种选择技术、3种交叉技术和3种变异技术的36种组合算子进行了性能比较。模拟了选择算子、交叉算子和变异算子的组合,优化了Rastrigin函数、Sphere函数和Exponential函数这三个基准函数。本研究的目的是为每个测试的目标函数寻找合适的选择、交叉和突变技术组合。本研究要分析比较的性能为平均迭代、目标函数f(x)/适应度值的最优值、xi值、平均时间。结果表明,不同的选择、变异和交叉对各种目标函数的优化效果不同,并且对每个目标函数有不同的合适的GA算子组合来寻找最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信