Dynamic constant time parallel graph algorithms with sub-linear work

Jonas Schmidt, T. Schwentick
{"title":"Dynamic constant time parallel graph algorithms with sub-linear work","authors":"Jonas Schmidt, T. Schwentick","doi":"10.48550/arXiv.2307.10107","DOIUrl":null,"url":null,"abstract":"The paper proposes dynamic parallel algorithms for connectivity and bipartiteness of undirected graphs that require constant time and $O(n^{1/2+\\epsilon})$ work on the CRCW PRAM model. The work of these algorithms almost matches the work of the $O(\\log n)$ time algorithm for connectivity by Kopelowitz et al. (2018) on the EREW PRAM model and the time of the sequential algorithm for bipartiteness by Eppstein et al. (1997). In particular, we show that the sparsification technique, which has been used in both mentioned papers, can in principle also be used for constant time algorithms in the CRCW PRAM model, despite the logarithmic depth of sparsification trees.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.10107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes dynamic parallel algorithms for connectivity and bipartiteness of undirected graphs that require constant time and $O(n^{1/2+\epsilon})$ work on the CRCW PRAM model. The work of these algorithms almost matches the work of the $O(\log n)$ time algorithm for connectivity by Kopelowitz et al. (2018) on the EREW PRAM model and the time of the sequential algorithm for bipartiteness by Eppstein et al. (1997). In particular, we show that the sparsification technique, which has been used in both mentioned papers, can in principle also be used for constant time algorithms in the CRCW PRAM model, despite the logarithmic depth of sparsification trees.
具有次线性功的动态常数时间并行图算法
本文提出了需要恒定时间的无向图的连通性和二分性的动态并行算法,并对CRCW PRAM模型进行了$O(n^{1/2+\epsilon})$研究。这些算法的工作几乎与Kopelowitz等人(2018)在EREW PRAM模型上的$O(\log n)$连接时间算法的工作和Eppstein等人(1997)的两部分顺序算法的时间相匹配。特别是,我们表明,尽管稀疏化树的对数深度,但在上述两篇论文中使用的稀疏化技术原则上也可以用于CRCW PRAM模型中的常数时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信