Bayesian Model Selection for Structural Break Models

Andrew T. Levin, Jeremy Piger
{"title":"Bayesian Model Selection for Structural Break Models","authors":"Andrew T. Levin, Jeremy Piger","doi":"10.2139/ssrn.1132463","DOIUrl":null,"url":null,"abstract":"We take a Bayesian approach to model selection in regression models with structural breaks in conditional mean and residual variance parameters. A novel feature of our approach is that it does not assume knowledge of the parameter subset that undergoes structural breaks, but instead conducts model selection jointly over the number of structural breaks and the subset of the parameter vector that changes at each break date. Simulation experiments demonstrate that conducting this joint model selection can be quite important in practice for the detection of structural breaks. We apply the proposed model selection procedure to characterize structural breaks in the parameters of an autoregressive model for post-war U.S. inflation. We find important changes in both residual variance and conditional mean parameters, the latter of which is revealed only upon conducting the joint model selection procedure developed here.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1132463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We take a Bayesian approach to model selection in regression models with structural breaks in conditional mean and residual variance parameters. A novel feature of our approach is that it does not assume knowledge of the parameter subset that undergoes structural breaks, but instead conducts model selection jointly over the number of structural breaks and the subset of the parameter vector that changes at each break date. Simulation experiments demonstrate that conducting this joint model selection can be quite important in practice for the detection of structural breaks. We apply the proposed model selection procedure to characterize structural breaks in the parameters of an autoregressive model for post-war U.S. inflation. We find important changes in both residual variance and conditional mean parameters, the latter of which is revealed only upon conducting the joint model selection procedure developed here.
结构断裂模型的贝叶斯模型选择
我们采用贝叶斯方法对条件均值和残差参数具有结构断裂的回归模型进行模型选择。我们的方法的一个新颖特征是,它不假设经历结构断裂的参数子集的知识,而是在结构断裂的数量和在每个断裂日期变化的参数向量子集上联合进行模型选择。仿真实验表明,进行这种节点模型选择对于结构断裂的检测具有重要的实际意义。我们应用提出的模型选择程序来表征战后美国通货膨胀自回归模型参数中的结构性断裂。我们发现残差方差和条件平均参数的重要变化,后者只有在进行这里开发的联合模型选择程序时才能显示出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信