Infinite Trees with Finite Dimensions

Yusuf Hafidh, E. Baskoro
{"title":"Infinite Trees with Finite Dimensions","authors":"Yusuf Hafidh, E. Baskoro","doi":"10.5220/0009876300002775","DOIUrl":null,"url":null,"abstract":": The properties of graph we consider are metric dimension, partition dimension, and locating-chromatic number. Infinite graphs can have either infinite or finite dimension. Some necessary conditions for an infinite graph with finite metric dimension has been studied in 2012. Infinite graphs with finite metric dimension will also have finite partition dimension and locating-chromatic number. In this paper we find a relation between the partition dimension (locating chromatic number) of an infinite tree with the metric dimensions of its special subtree. We also show that it is possible for an infinite trees with infinite metric dimension to have finite partition dimension (locating-chromatic number).","PeriodicalId":257157,"journal":{"name":"Proceedings of the 1st International MIPAnet Conference on Science and Mathematics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International MIPAnet Conference on Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0009876300002775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: The properties of graph we consider are metric dimension, partition dimension, and locating-chromatic number. Infinite graphs can have either infinite or finite dimension. Some necessary conditions for an infinite graph with finite metric dimension has been studied in 2012. Infinite graphs with finite metric dimension will also have finite partition dimension and locating-chromatic number. In this paper we find a relation between the partition dimension (locating chromatic number) of an infinite tree with the metric dimensions of its special subtree. We also show that it is possible for an infinite trees with infinite metric dimension to have finite partition dimension (locating-chromatic number).
有限维的无限树
图的性质是度量维数、划分维数和定位色数。无限图可以是无限维,也可以是有限维。2012年研究了度量维数有限的无限图的若干必要条件。具有有限度量维数的无限图也将具有有限的划分维数和定位色数。本文研究了无限树的划分维数(定位色数)与其特殊子树的度量维数之间的关系。我们还证明了具有无限度量维数的无限树可能具有有限的划分维数(定位色数)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信