{"title":"Laser Metal Deposition of Aluminum 7075 Alloy","authors":"A Ramakrishnan Vsk Adapa A Bhagavatam, G. Dinda","doi":"10.18689/ijmsr-1000108","DOIUrl":null,"url":null,"abstract":"Published by Madridge Publishers Abstract Additive manufacturing (AM) has become one of the most important research topics with its ability to manufacture a wide range of alloys like steel, nickel-based super alloys, titanium alloys, aluminum alloys, etc. Al 7075 is not a friendly alloy for laser metal deposition (LMD). This paper reports the successful development of LMD process for deposition of defect-free Al 7075 alloy. By preheating the substrate to 260°C the residual stress decreased and eliminated the hot/solidification cracks in the deposit. LMD is a rapid cooling process due to which the gas bubbles of Mg and Zn are trapped in the deposit. These are identified as gas porosity because of the partial evaporation of low boiling point elements like magnesium and zinc present in this alloy. The least porosity observed was 0.08% at 29 J/mm2 of energy input. The SEM and EDS investigation of as-deposited Al 7075 revealed the segregation of Cu, Mg, and Zn rich phases along the interdendritic regions and grain boundaries. Cu, Mg, and Zn rich phases at the interdendritic regions dissolved into the α-Almatrix after heat treatment. The XRD scan of laser deposited Al 7075 revealed the presence of Al2CuMg and MgZn2 precipitation hardening phases.","PeriodicalId":322091,"journal":{"name":"International Journal of Material Science and Research","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18689/ijmsr-1000108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Published by Madridge Publishers Abstract Additive manufacturing (AM) has become one of the most important research topics with its ability to manufacture a wide range of alloys like steel, nickel-based super alloys, titanium alloys, aluminum alloys, etc. Al 7075 is not a friendly alloy for laser metal deposition (LMD). This paper reports the successful development of LMD process for deposition of defect-free Al 7075 alloy. By preheating the substrate to 260°C the residual stress decreased and eliminated the hot/solidification cracks in the deposit. LMD is a rapid cooling process due to which the gas bubbles of Mg and Zn are trapped in the deposit. These are identified as gas porosity because of the partial evaporation of low boiling point elements like magnesium and zinc present in this alloy. The least porosity observed was 0.08% at 29 J/mm2 of energy input. The SEM and EDS investigation of as-deposited Al 7075 revealed the segregation of Cu, Mg, and Zn rich phases along the interdendritic regions and grain boundaries. Cu, Mg, and Zn rich phases at the interdendritic regions dissolved into the α-Almatrix after heat treatment. The XRD scan of laser deposited Al 7075 revealed the presence of Al2CuMg and MgZn2 precipitation hardening phases.