A note on phase (norm) retrievable real Hilbert space fusion frames

P. Casazza, F. Akrami, A. Rahimi
{"title":"A note on phase (norm) retrievable real Hilbert space fusion frames","authors":"P. Casazza, F. Akrami, A. Rahimi","doi":"10.1142/s0219691322500400","DOIUrl":null,"url":null,"abstract":"In this manuscript, we present several new results in finite and countable dimensional real Hilbert space phase retrieval and norm retrieval by vectors and projections. We make a detailed study of when hyperplanes do norm retrieval. Also, we show that the families of norm retrievable frames $\\{f_{i}\\}_{i=1}^{m}$ in $\\mathbb{R}^n$ are not dense in the family of $m\\leq (2n-2)$-element sets of vectors in $\\mathbb{R}^n$ for every finite $n$ and the families of vectors which do norm retrieval in $\\ell^2$ are not dense in the infinite families of vectors in $\\ell^2$. We also show that if a Riesz basis does norm retrieval in $\\ell^2$, then it is an orthogonal sequence. We provide numerous examples to show that our results are best possible.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691322500400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this manuscript, we present several new results in finite and countable dimensional real Hilbert space phase retrieval and norm retrieval by vectors and projections. We make a detailed study of when hyperplanes do norm retrieval. Also, we show that the families of norm retrievable frames $\{f_{i}\}_{i=1}^{m}$ in $\mathbb{R}^n$ are not dense in the family of $m\leq (2n-2)$-element sets of vectors in $\mathbb{R}^n$ for every finite $n$ and the families of vectors which do norm retrieval in $\ell^2$ are not dense in the infinite families of vectors in $\ell^2$. We also show that if a Riesz basis does norm retrieval in $\ell^2$, then it is an orthogonal sequence. We provide numerous examples to show that our results are best possible.
关于相位(范数)可检索的实希尔伯特空间融合坐标系的注记
本文给出了有限可数维实数希尔伯特空间相位检索和向量投影范数检索的几个新结果。我们对超平面何时进行范数检索进行了详细的研究。此外,我们还表明,对于每个有限的$n$, $\mathbb{R}^n$中范数可检索帧$\{f_{i}\}_{i=1}^{m}$的族在$\mathbb{R}^n$中向量的$m\leq (2n-2)$元素集族中是不密集的,并且在$\ell^2$中进行范数检索的向量族在$\ell^2$中的无限族中是不密集的。我们还证明,如果一个Riesz基在$\ell^2$中进行范数检索,那么它就是一个正交序列。我们提供了大量的例子来证明我们的结果是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信