A Robust Dissimilarity-Based Neural Network for Temporal Pattern Recognition

Brian Kenji Iwana, Volkmar Frinken, S. Uchida
{"title":"A Robust Dissimilarity-Based Neural Network for Temporal Pattern Recognition","authors":"Brian Kenji Iwana, Volkmar Frinken, S. Uchida","doi":"10.1109/ICFHR.2016.0058","DOIUrl":null,"url":null,"abstract":"Temporal pattern recognition is challenging because temporal patterns require extra considerations over other data types, such as order, structure, and temporal distortions. Recently, there has been a trend in using large data and deep learning, however, many of the tools cannot be directly used with temporal patterns. Convolutional Neural Networks (CNN) for instance are traditionally used for visual and image pattern recognition. This paper proposes a method using a neural network to classify isolated temporal patterns directly. The proposed method uses dynamic time warping (DTW) as a kernel-like function to learn dissimilarity-based feature maps as the basis of the network. We show that using the proposed DTW-NN, efficient classification of on-line handwritten digits is possible with accuracies comparable to state-of-the-art methods.","PeriodicalId":194844,"journal":{"name":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2016.0058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Temporal pattern recognition is challenging because temporal patterns require extra considerations over other data types, such as order, structure, and temporal distortions. Recently, there has been a trend in using large data and deep learning, however, many of the tools cannot be directly used with temporal patterns. Convolutional Neural Networks (CNN) for instance are traditionally used for visual and image pattern recognition. This paper proposes a method using a neural network to classify isolated temporal patterns directly. The proposed method uses dynamic time warping (DTW) as a kernel-like function to learn dissimilarity-based feature maps as the basis of the network. We show that using the proposed DTW-NN, efficient classification of on-line handwritten digits is possible with accuracies comparable to state-of-the-art methods.
一种鲁棒的基于差异性的时间模式识别神经网络
时间模式识别具有挑战性,因为与其他数据类型相比,时间模式需要额外的考虑,例如顺序、结构和时间扭曲。最近,使用大数据和深度学习已经成为一种趋势,然而,许多工具不能直接用于时间模式。例如,卷积神经网络(CNN)传统上用于视觉和图像模式识别。本文提出了一种利用神经网络对孤立时间模式进行直接分类的方法。该方法采用动态时间规整(DTW)作为类核函数,学习基于差异性的特征映射作为网络的基础。我们表明,使用所提出的DTW-NN,在线手写数字的有效分类是可能的,其精度可与最先进的方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信