Detection and Identification of Abaca Diseases using a Convolutional Neural Network CNN

Lyndon T. Buenconsejo, N. Linsangan
{"title":"Detection and Identification of Abaca Diseases using a Convolutional Neural Network CNN","authors":"Lyndon T. Buenconsejo, N. Linsangan","doi":"10.1109/TENCON54134.2021.9707337","DOIUrl":null,"url":null,"abstract":"To have an alternative way to detect and identify abaca plant diseases, the manual approach has been devised using the Raspberry Pi 4, Raspberry Pi H.Q. Camera, and Raspberry Pi LCD Monitor. The study used the Convolutional Neural Network-VGGNet-16 architecture. The model was trained using 300 training datasets wherein, for each class, there are 100 training samples. The researcher split the training data into 80% training and 20% validation data. The model achieved an accuracy rate of 88.9% and 91.7% of the average precision rate upon its testing. The implementation of this study can be advantageous for the early detection and identification of abaca plant diseases. The researcher also notes that the device can be applied for flying objects for a broader detection range and identification for future works.","PeriodicalId":405859,"journal":{"name":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON54134.2021.9707337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

To have an alternative way to detect and identify abaca plant diseases, the manual approach has been devised using the Raspberry Pi 4, Raspberry Pi H.Q. Camera, and Raspberry Pi LCD Monitor. The study used the Convolutional Neural Network-VGGNet-16 architecture. The model was trained using 300 training datasets wherein, for each class, there are 100 training samples. The researcher split the training data into 80% training and 20% validation data. The model achieved an accuracy rate of 88.9% and 91.7% of the average precision rate upon its testing. The implementation of this study can be advantageous for the early detection and identification of abaca plant diseases. The researcher also notes that the device can be applied for flying objects for a broader detection range and identification for future works.
基于卷积神经网络的Abaca疾病检测与识别
为了有另一种方法来检测和识别abaca植物病害,人工方法已经设计使用树莓派4,树莓派H.Q.相机,和树莓派液晶显示器。该研究使用了卷积神经网络- vggnet -16架构。该模型使用300个训练数据集进行训练,其中每个类有100个训练样本。研究者将训练数据分成80%的训练数据和20%的验证数据。经测试,该模型的准确率为88.9%,平均准确率为91.7%。本研究的开展有利于ababa植物病害的早期发现和鉴定。研究人员还指出,该装置可以应用于飞行物体,为未来的工作提供更广泛的探测范围和识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信