Image Segmentation Method Combines MPM/MAP Algorithm and Geometric Division

Ling Yong-fang, Shu Heng
{"title":"Image Segmentation Method Combines MPM/MAP Algorithm and Geometric Division","authors":"Ling Yong-fang, Shu Heng","doi":"10.1109/DCABES.2015.90","DOIUrl":null,"url":null,"abstract":"A novel image segmentation algorithm based on a Bayesian framework is studied in this paper. We presents a new region and statistics based approach, which combines Voronoi tessellation technique and Maximum a posterior / Maximization of the posterior marginal (MAP /MPM) algorithm. The image domain is partitioned into a group of sub-regions by Voronoi tessellation, each of which is a component of homogeneous regions. And the image is modeled on the supposition that the intensities of pixels in each homogenous region satisfy an identical and independent gamma distribution. The initial segmentation is applied to obtain number of the initial motions and the corresponding initial parameters of the image model. Then the parameters are updated by using the given parameter estimation method. A fast estimation procedure for the posterior marginals is added to the MAP algorithm. The experiment results show that the proposed algorithm here is effective.","PeriodicalId":444588,"journal":{"name":"2015 14th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","volume":"25 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 14th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES.2015.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel image segmentation algorithm based on a Bayesian framework is studied in this paper. We presents a new region and statistics based approach, which combines Voronoi tessellation technique and Maximum a posterior / Maximization of the posterior marginal (MAP /MPM) algorithm. The image domain is partitioned into a group of sub-regions by Voronoi tessellation, each of which is a component of homogeneous regions. And the image is modeled on the supposition that the intensities of pixels in each homogenous region satisfy an identical and independent gamma distribution. The initial segmentation is applied to obtain number of the initial motions and the corresponding initial parameters of the image model. Then the parameters are updated by using the given parameter estimation method. A fast estimation procedure for the posterior marginals is added to the MAP algorithm. The experiment results show that the proposed algorithm here is effective.
结合MPM/MAP算法和几何分割的图像分割方法
本文研究了一种新的基于贝叶斯框架的图像分割算法。我们提出了一种新的基于区域和统计的方法,该方法将Voronoi镶嵌技术与最大后验/最大后验边缘(MAP /MPM)算法相结合。通过Voronoi细分将图像域划分为一组子区域,每个子区域都是同质区域的一个组成部分。并在假设每个均匀区域中像素的强度满足相同且独立的伽马分布的基础上对图像进行建模。通过初始分割得到图像模型的初始运动个数和相应的初始参数。然后利用给定的参数估计方法对参数进行更新。在MAP算法中加入了后验边缘的快速估计过程。实验结果表明,本文提出的算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信