Visual Discovery in Large-Scale Astrophysical Datasets; Experiences Using the Sloan Digital Sky Survey

G. Caniglia, M. Krokos, U. Becciani, C. Gheller, R. Nichol, M. Comparato, A. Costa, A. Grillo, Z. Jin, P. Massimino, F. Vitello
{"title":"Visual Discovery in Large-Scale Astrophysical Datasets; Experiences Using the Sloan Digital Sky Survey","authors":"G. Caniglia, M. Krokos, U. Becciani, C. Gheller, R. Nichol, M. Comparato, A. Costa, A. Grillo, Z. Jin, P. Massimino, F. Vitello","doi":"10.1109/VIZ.2009.32","DOIUrl":null,"url":null,"abstract":"Nowadays astronomers are experiencing an unprecedented growth in the quality and quantity of datasets coming from numerical simulations and real-world observations. For example, the increasing availability of high performance computing facilities has given the possibility to perform large-scale simulations of several dimensions. Also, forthcoming astronomical surveys are expected to collect datasets of several petabytes. The emerging need is thus for efficient visual discovery tools for rapid inspection to identify regions of interest in large-scale datasets prior to applying computationally expensive data analysis algorithms. This paper reports our experiences in developing visual discovery tools for the Sloan Digital Sky Survey (SDSS), the most ambitious astronomical survey ever undertaken. We present existing tools and visualization requirements collected from SDSS users for new functionality. We then discuss a range of newly developed visual discovery tools and their applicability to SDSS and finally we conclude with pointers to future developments.","PeriodicalId":315752,"journal":{"name":"2009 Second International Conference in Visualisation","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference in Visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIZ.2009.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays astronomers are experiencing an unprecedented growth in the quality and quantity of datasets coming from numerical simulations and real-world observations. For example, the increasing availability of high performance computing facilities has given the possibility to perform large-scale simulations of several dimensions. Also, forthcoming astronomical surveys are expected to collect datasets of several petabytes. The emerging need is thus for efficient visual discovery tools for rapid inspection to identify regions of interest in large-scale datasets prior to applying computationally expensive data analysis algorithms. This paper reports our experiences in developing visual discovery tools for the Sloan Digital Sky Survey (SDSS), the most ambitious astronomical survey ever undertaken. We present existing tools and visualization requirements collected from SDSS users for new functionality. We then discuss a range of newly developed visual discovery tools and their applicability to SDSS and finally we conclude with pointers to future developments.
大规模天体物理数据集的视觉发现使用斯隆数字巡天的经验
如今,天文学家正经历着来自数值模拟和现实世界观测的数据集质量和数量的空前增长。例如,高性能计算设备的日益普及使得执行多个维度的大规模模拟成为可能。此外,即将到来的天文调查预计将收集数pb的数据集。因此,在应用计算昂贵的数据分析算法之前,需要高效的视觉发现工具来快速检查以识别大规模数据集中感兴趣的区域。本文报告了我们为斯隆数字巡天(SDSS)开发视觉发现工具的经验,这是有史以来最雄心勃勃的天文巡天。我们展示了从SDSS用户收集的现有工具和可视化需求,以实现新功能。然后,我们讨论了一系列新开发的可视化发现工具及其对SDSS的适用性,最后,我们对未来的发展进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信