Evaluation of predictive data mining algorithms in soil data classification for optimized crop recommendation

Ansif Arooj, Mohsin Riaz, M. Akram
{"title":"Evaluation of predictive data mining algorithms in soil data classification for optimized crop recommendation","authors":"Ansif Arooj, Mohsin Riaz, M. Akram","doi":"10.1109/ICACS.2018.8333275","DOIUrl":null,"url":null,"abstract":"Agricultural research has strengthened the optimized economical profit, internationally and is very vast and important field to gain more benefits. However, it can be enhanced by the use of different technological resources, tool, and procedures. Today, the term data mining [1][2] is an interdisciplinary process of analyzing, processing and evaluating the real-world datasets and prediction on the basis of the findings. Our case-based analysis provides empirical evidence that we can use different data mining classification algorithms to classify the dataset of agricultural regions on the basis of soil properties. Additionally, we have investigated the most performing algorithm having powerful prediction accuracy to recommend the best crop for better yield.","PeriodicalId":128949,"journal":{"name":"2018 International Conference on Advancements in Computational Sciences (ICACS)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advancements in Computational Sciences (ICACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACS.2018.8333275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Agricultural research has strengthened the optimized economical profit, internationally and is very vast and important field to gain more benefits. However, it can be enhanced by the use of different technological resources, tool, and procedures. Today, the term data mining [1][2] is an interdisciplinary process of analyzing, processing and evaluating the real-world datasets and prediction on the basis of the findings. Our case-based analysis provides empirical evidence that we can use different data mining classification algorithms to classify the dataset of agricultural regions on the basis of soil properties. Additionally, we have investigated the most performing algorithm having powerful prediction accuracy to recommend the best crop for better yield.
预测数据挖掘算法在土壤数据分类中的应用
农业科研加强了优化经济效益,在国际上是一个获得更大效益的非常广阔而重要的领域。然而,它可以通过使用不同的技术资源、工具和程序来增强。今天,术语数据挖掘[1][2]是一个跨学科的过程,分析、处理和评估现实世界的数据集,并在发现的基础上进行预测。我们基于案例的分析提供了经验证据,表明我们可以使用不同的数据挖掘分类算法对基于土壤性质的农业区数据集进行分类。此外,我们还研究了性能最好的算法,具有强大的预测精度,以推荐最佳作物以获得更好的产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信