Numerical aspects of the secondary magnetic field mapping in Magnetic Induction Tomography

B. Szuflitowska, M. Ziółkowski, K. Stawicki
{"title":"Numerical aspects of the secondary magnetic field mapping in Magnetic Induction Tomography","authors":"B. Szuflitowska, M. Ziółkowski, K. Stawicki","doi":"10.5604/01.3001.0010.5206","DOIUrl":null,"url":null,"abstract":". Magnetic Induction Tomography (MIT) belongs to the noncontact electromagnetic imaging techniques. This paper focuses on determination of a secondary magnetic field map calculated with the help of the Biot-Savart law around the low-conductivity object. The inclusions of various shapes and different electrical conductivities values and two measurement planes are considered. In each case the objects’ single maximal cell volume with assumed uniform eddy current density has been determined. In order to keep the relative error below 1% the object should be divided in most cases into elements with maximal cell volume equal to 0.244 mm 3 for yz − plane, and 0.03 mm 3 for xy − plane.","PeriodicalId":142227,"journal":{"name":"Informatics, Control, Measurement in Economy and Environment Protection","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics, Control, Measurement in Economy and Environment Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0010.5206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Magnetic Induction Tomography (MIT) belongs to the noncontact electromagnetic imaging techniques. This paper focuses on determination of a secondary magnetic field map calculated with the help of the Biot-Savart law around the low-conductivity object. The inclusions of various shapes and different electrical conductivities values and two measurement planes are considered. In each case the objects’ single maximal cell volume with assumed uniform eddy current density has been determined. In order to keep the relative error below 1% the object should be divided in most cases into elements with maximal cell volume equal to 0.244 mm 3 for yz − plane, and 0.03 mm 3 for xy − plane.
磁感应层析成像中二次磁场成像的数值方面
. 磁感应层析成像(MIT)属于非接触式电磁成像技术。本文研究了利用比奥-萨瓦定律计算的低电导率物体周围的二次磁场图的确定。考虑了不同形状、不同电导率值的夹杂物和两种测量平面。在假设均匀涡流密度的情况下,确定了每一种情况下物体的最大单胞体积。为了使相对误差保持在1%以下,在大多数情况下,应将对象划分为最大单元体积为yz -面0.244 mm 3和xy -面0.03 mm 3的单元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信