A Bayes coding algorithm using context tree

T. Matsushima, S. Hirasawa
{"title":"A Bayes coding algorithm using context tree","authors":"T. Matsushima, S. Hirasawa","doi":"10.1109/ISIT.1994.394633","DOIUrl":null,"url":null,"abstract":"The context tree weighting (CTW) algorithm [Willems et al., 1993] has high compressibility for universal coding with respect to FSMX sources. The present authors propose an algorithm by reinterpreting the CTW algorithm from the viewpoint of Bayes coding. This algorithm can be applied to a wide class of prior distribution for finite alphabet FSMX sources. The algorithm is regarded as both a generalized version of the CTW procedure and a practical algorithm using a context tree of the adaptive Bayes coding which has been studied in Mataushima et al. (1991). Moreover, the proposed algorithm is free from underflow which frequently occurs in the CTW procedure.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The context tree weighting (CTW) algorithm [Willems et al., 1993] has high compressibility for universal coding with respect to FSMX sources. The present authors propose an algorithm by reinterpreting the CTW algorithm from the viewpoint of Bayes coding. This algorithm can be applied to a wide class of prior distribution for finite alphabet FSMX sources. The algorithm is regarded as both a generalized version of the CTW procedure and a practical algorithm using a context tree of the adaptive Bayes coding which has been studied in Mataushima et al. (1991). Moreover, the proposed algorithm is free from underflow which frequently occurs in the CTW procedure.<>
使用上下文树的贝叶斯编码算法
上下文树加权(CTW)算法[Willems等人,1993]对于FSMX源的通用编码具有很高的可压缩性。本文从贝叶斯编码的角度对CTW算法进行了重新解释,提出了一种新的算法。该算法适用于有限字母FSMX源的广泛先验分布。该算法被认为是CTW过程的广义版本,也是使用Mataushima等人(1991)研究的自适应贝叶斯编码上下文树的实用算法。此外,该算法不存在CTW过程中经常出现的底流问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信