P. Lorenz, Bernd Schäufele, Oliver Sawade, I. Radusch
{"title":"Recursive State Estimation for Lane Detection Using a Fusion of Cooperative and Map Based Data","authors":"P. Lorenz, Bernd Schäufele, Oliver Sawade, I. Radusch","doi":"10.1109/ITSC.2015.352","DOIUrl":null,"url":null,"abstract":"Modern automated and cooperative driver assistance systems (CoDAS) rely deeply on the position estimation. Regardless of absolute positioning accuracy, the relative position in regard to driving environment and other vehicles needs to be of high quality to enable sophisticated functions. Global Navigation Satellite Systems (GNSS) fulfill this demand only partially. In this paper we present an algorithm to accurately infer the driving lane by utilizing Dedicated Short Range Communication (DSRC) and map data alone. We evaluate our approach against simulated and real-life data from Europes largest cooperative vehicle Field Operational Test (FOT): simTD. This lane detection algorithm will be an enabler for CoDAS functions like collaborative driving and merging developed in the TEAM IP project.","PeriodicalId":124818,"journal":{"name":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2015.352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Modern automated and cooperative driver assistance systems (CoDAS) rely deeply on the position estimation. Regardless of absolute positioning accuracy, the relative position in regard to driving environment and other vehicles needs to be of high quality to enable sophisticated functions. Global Navigation Satellite Systems (GNSS) fulfill this demand only partially. In this paper we present an algorithm to accurately infer the driving lane by utilizing Dedicated Short Range Communication (DSRC) and map data alone. We evaluate our approach against simulated and real-life data from Europes largest cooperative vehicle Field Operational Test (FOT): simTD. This lane detection algorithm will be an enabler for CoDAS functions like collaborative driving and merging developed in the TEAM IP project.