Recursive State Estimation for Lane Detection Using a Fusion of Cooperative and Map Based Data

P. Lorenz, Bernd Schäufele, Oliver Sawade, I. Radusch
{"title":"Recursive State Estimation for Lane Detection Using a Fusion of Cooperative and Map Based Data","authors":"P. Lorenz, Bernd Schäufele, Oliver Sawade, I. Radusch","doi":"10.1109/ITSC.2015.352","DOIUrl":null,"url":null,"abstract":"Modern automated and cooperative driver assistance systems (CoDAS) rely deeply on the position estimation. Regardless of absolute positioning accuracy, the relative position in regard to driving environment and other vehicles needs to be of high quality to enable sophisticated functions. Global Navigation Satellite Systems (GNSS) fulfill this demand only partially. In this paper we present an algorithm to accurately infer the driving lane by utilizing Dedicated Short Range Communication (DSRC) and map data alone. We evaluate our approach against simulated and real-life data from Europes largest cooperative vehicle Field Operational Test (FOT): simTD. This lane detection algorithm will be an enabler for CoDAS functions like collaborative driving and merging developed in the TEAM IP project.","PeriodicalId":124818,"journal":{"name":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2015.352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Modern automated and cooperative driver assistance systems (CoDAS) rely deeply on the position estimation. Regardless of absolute positioning accuracy, the relative position in regard to driving environment and other vehicles needs to be of high quality to enable sophisticated functions. Global Navigation Satellite Systems (GNSS) fulfill this demand only partially. In this paper we present an algorithm to accurately infer the driving lane by utilizing Dedicated Short Range Communication (DSRC) and map data alone. We evaluate our approach against simulated and real-life data from Europes largest cooperative vehicle Field Operational Test (FOT): simTD. This lane detection algorithm will be an enabler for CoDAS functions like collaborative driving and merging developed in the TEAM IP project.
基于合作数据和地图数据融合的递归状态估计车道检测
现代自动驾驶辅助系统(CoDAS)高度依赖于位置估计。无论绝对定位精度如何,相对于驾驶环境和其他车辆的相对位置都需要高质量,才能实现复杂的功能。全球导航卫星系统(GNSS)只能部分满足这一需求。本文提出了一种仅利用专用短程通信(DSRC)和地图数据就能准确推断行车路线的算法。我们根据欧洲最大的合作车辆现场操作测试(FOT) simTD的模拟和真实数据对我们的方法进行了评估。这种车道检测算法将成为TEAM IP项目中开发的协同驾驶和合并等CoDAS功能的推手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信