{"title":"Progress in real-time photoacoustic imaging using optical ultrasound detection","authors":"R. Nuster, G. Paltauf","doi":"10.12684/ALT.1.92","DOIUrl":null,"url":null,"abstract":"Optical phase contrast full field detection in combination with a CCD-camera can be used to record acoustic fields. This allows to obtain two-dimensional photoacoustic projection images in real-time. The present work shows an extension of the technique towards full three-dimensional photoacoustic tomography. The reconstruction of the initial three dimensional pressure distribution is a two step process. First of all, projection images of the initial pressure distribution are acquired. This is done by back propagating the observed wave pattern in frequency space. In the second step the inverse Radon transform is applied to the obtained projection dataset to reconstruct the initial three dimensional pressure distribution. An experiment is performed using a phantom sample which mimics the properties of biological samples to show the overall applicability of this technique for real-time photoacoustic imaging.","PeriodicalId":103215,"journal":{"name":"ALT Proceedings","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ALT Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12684/ALT.1.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Optical phase contrast full field detection in combination with a CCD-camera can be used to record acoustic fields. This allows to obtain two-dimensional photoacoustic projection images in real-time. The present work shows an extension of the technique towards full three-dimensional photoacoustic tomography. The reconstruction of the initial three dimensional pressure distribution is a two step process. First of all, projection images of the initial pressure distribution are acquired. This is done by back propagating the observed wave pattern in frequency space. In the second step the inverse Radon transform is applied to the obtained projection dataset to reconstruct the initial three dimensional pressure distribution. An experiment is performed using a phantom sample which mimics the properties of biological samples to show the overall applicability of this technique for real-time photoacoustic imaging.