Learning from Noisy Labels via Meta Credible Label Elicitation

Ziyang Gao, Yaping Yan, Xin Geng
{"title":"Learning from Noisy Labels via Meta Credible Label Elicitation","authors":"Ziyang Gao, Yaping Yan, Xin Geng","doi":"10.1109/ICIP46576.2022.9897577","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNS) can easily overfit to noisy data, which leads to a significant degradation of performance. Previous efforts are primarily made by label correction or sample selection to alleviate supervision problem. To distinguish between noisy labels and clean labels, we propose a meta-learning framework which could gradually elicit credible labels via the meta-gradient descent step under the guidance of potentially non-noisy samples. Specifically, by exploiting the topological information of feature space, we can automatically estimate label confidence with a meta-learner. An iterative procedure is designed to select the most trustworthy noisy-labeled instances to generate pseudo labels. Then we train DNNs with pseudo supervision and original noisy super vision, which learns sufficiency and robustness properties in a joint learning objective. Experimental results on benchmark classification datasets show the superiority of our approach against the state-of-the-art methods.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep neural networks (DNNS) can easily overfit to noisy data, which leads to a significant degradation of performance. Previous efforts are primarily made by label correction or sample selection to alleviate supervision problem. To distinguish between noisy labels and clean labels, we propose a meta-learning framework which could gradually elicit credible labels via the meta-gradient descent step under the guidance of potentially non-noisy samples. Specifically, by exploiting the topological information of feature space, we can automatically estimate label confidence with a meta-learner. An iterative procedure is designed to select the most trustworthy noisy-labeled instances to generate pseudo labels. Then we train DNNs with pseudo supervision and original noisy super vision, which learns sufficiency and robustness properties in a joint learning objective. Experimental results on benchmark classification datasets show the superiority of our approach against the state-of-the-art methods.
通过元可信标签引出从噪声标签中学习
深度神经网络(DNNS)很容易对噪声数据过拟合,从而导致性能的显著下降。之前的努力主要是通过标签纠正或样本选择来缓解监管问题。为了区分有噪声标签和干净标签,我们提出了一个元学习框架,该框架可以在潜在无噪声样本的指导下,通过元梯度下降步骤逐步获得可信标签。具体来说,利用特征空间的拓扑信息,利用元学习器自动估计标签置信度。设计了一个迭代过程来选择最可信的噪声标记实例来生成伪标签。然后我们用伪监督和原始噪声监督视觉训练dnn,在一个联合学习目标中学习充分性和鲁棒性。在基准分类数据集上的实验结果表明,我们的方法相对于最先进的方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信