Computer assisted landmarking of cephalometric radiographs

M. Desvignes, B. Romaniuk, R. Demoment, M. Revenu, M. Deshayes
{"title":"Computer assisted landmarking of cephalometric radiographs","authors":"M. Desvignes, B. Romaniuk, R. Demoment, M. Revenu, M. Deshayes","doi":"10.1109/IAI.2000.839619","DOIUrl":null,"url":null,"abstract":"We address the problem of finding an initial estimation of the location of landmarks on an image, when the landmarks are difficult to distinguish on the image and when the locations are dependent together from external forces such as growth. Our method solves the problem using an adaptive coordinate space where locations are registered. In this space, variability is greatly reduced. A training set is observed to build automatically a mean and a variability model of the landmarks. This model is used to predict the initial estimation on a new image. This method is applied to the difficult problem of the interpretation of cephalograms, with good results.","PeriodicalId":224112,"journal":{"name":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2000.839619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We address the problem of finding an initial estimation of the location of landmarks on an image, when the landmarks are difficult to distinguish on the image and when the locations are dependent together from external forces such as growth. Our method solves the problem using an adaptive coordinate space where locations are registered. In this space, variability is greatly reduced. A training set is observed to build automatically a mean and a variability model of the landmarks. This model is used to predict the initial estimation on a new image. This method is applied to the difficult problem of the interpretation of cephalograms, with good results.
头颅x线片的计算机辅助标记
当图像上的地标难以区分时,以及当位置依赖于外力(如生长)时,我们解决了在图像上找到地标位置的初始估计的问题。我们的方法使用自适应坐标空间来解决这个问题。在这个空间中,可变性大大减少。观察一个训练集,自动建立一个地标的均值和可变性模型。该模型用于对新图像的初始估计进行预测。将该方法应用于脑电图判读难题,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信