From cancer gene expression data to simple vital rules

R. Hewett, Ali Goksu, Soma Datta
{"title":"From cancer gene expression data to simple vital rules","authors":"R. Hewett, Ali Goksu, Soma Datta","doi":"10.1109/TPSD.2006.5507407","DOIUrl":null,"url":null,"abstract":"Microarray gene expression profiling technology generates huge high-dimensional data. Finding analysis techniques that can cope with such data characteristics is crucial in Bioinformatics. This paper proposes a variation of an ensemble learning approach combined with a clustering technique to extract “simple” and yet “vital” rules from genomic data. The paper describes the approach and evaluates it on cancer gene expression data sets. We report experimental results including comparisons with other results obtained from a similar ensemble learning approach as well as some sophisticated techniques such as support vector machines.","PeriodicalId":385396,"journal":{"name":"2006 IEEE Region 5 Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Region 5 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPSD.2006.5507407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microarray gene expression profiling technology generates huge high-dimensional data. Finding analysis techniques that can cope with such data characteristics is crucial in Bioinformatics. This paper proposes a variation of an ensemble learning approach combined with a clustering technique to extract “simple” and yet “vital” rules from genomic data. The paper describes the approach and evaluates it on cancer gene expression data sets. We report experimental results including comparisons with other results obtained from a similar ensemble learning approach as well as some sophisticated techniques such as support vector machines.
从癌症基因表达数据到简单的生命规则
微阵列基因表达谱技术产生巨大的高维数据。寻找能够处理这些数据特征的分析技术在生物信息学中是至关重要的。本文提出了一种结合聚类技术的集成学习方法的变体,以从基因组数据中提取“简单”但“重要”的规则。本文描述了这种方法,并在癌症基因表达数据集上对其进行了评价。我们报告了实验结果,包括与类似的集成学习方法以及一些复杂技术(如支持向量机)获得的其他结果的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信