Cansen Jiang, Dennis Christie, D. Paudel, C. Demonceaux
{"title":"High quality reconstruction of dynamic objects using 2D-3D camera fusion","authors":"Cansen Jiang, Dennis Christie, D. Paudel, C. Demonceaux","doi":"10.1109/ICIP.2017.8296674","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a complete pipeline for high quality reconstruction of dynamic objects using 2D-3D camera setup attached to a moving vehicle. Starting from the segmented motion trajectories of individual objects, we compute their precise motion parameters, register multiple sparse point clouds to increase the density, and develop a smooth and textured surface from the dense (but scattered) point cloud. The success of our method relies on the proposed optimization framework for accurate motion estimation between two sparse point clouds. Our formulation for fusing closest-point and consensus based motion estimations, respectively in the absence and presence of motion trajectories, is the key to obtain such accuracy. Several experiments performed on both synthetic and real (KITTI) datasets show that the proposed framework is very robust and accurate.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we propose a complete pipeline for high quality reconstruction of dynamic objects using 2D-3D camera setup attached to a moving vehicle. Starting from the segmented motion trajectories of individual objects, we compute their precise motion parameters, register multiple sparse point clouds to increase the density, and develop a smooth and textured surface from the dense (but scattered) point cloud. The success of our method relies on the proposed optimization framework for accurate motion estimation between two sparse point clouds. Our formulation for fusing closest-point and consensus based motion estimations, respectively in the absence and presence of motion trajectories, is the key to obtain such accuracy. Several experiments performed on both synthetic and real (KITTI) datasets show that the proposed framework is very robust and accurate.