Mathematical Symbol Indexing Using Topologically Ordered Clusters of Shape Contexts

S. Marinai, Beatrice Miotti, G. Soda
{"title":"Mathematical Symbol Indexing Using Topologically Ordered Clusters of Shape Contexts","authors":"S. Marinai, Beatrice Miotti, G. Soda","doi":"10.1109/ICDAR.2009.120","DOIUrl":null,"url":null,"abstract":"This paper addresses the indexing and retrieval of mathematical symbols from digitized documents. The proposed approach exploits Shape Contexts (SC) to describe the shape of mathematical symbols. Starting from the vector space method, that is based on SC clustering, we explore the use of topological ordered clusters to improve the retrieval performance. The clustering is computed by means of Self-Organizing Maps that organize the clusters in two dimensional topologically ordered feature maps. The retrieval performance are compared with those obtained using the K-means clustering on a large collection of mathematical symbols gathered from the widely used INFTY database.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper addresses the indexing and retrieval of mathematical symbols from digitized documents. The proposed approach exploits Shape Contexts (SC) to describe the shape of mathematical symbols. Starting from the vector space method, that is based on SC clustering, we explore the use of topological ordered clusters to improve the retrieval performance. The clustering is computed by means of Self-Organizing Maps that organize the clusters in two dimensional topologically ordered feature maps. The retrieval performance are compared with those obtained using the K-means clustering on a large collection of mathematical symbols gathered from the widely used INFTY database.
使用形状上下文拓扑有序簇的数学符号索引
本文论述了数字化文献中数学符号的标引与检索。该方法利用形状上下文(SC)来描述数学符号的形状。从基于SC聚类的向量空间方法出发,探索了利用拓扑有序聚类来提高检索性能。聚类是通过自组织映射来计算的,自组织映射将聚类组织在二维拓扑有序的特征映射中。将其检索性能与K-means聚类在广泛使用的INFTY数据库中收集的大量数学符号上获得的检索性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信