Control strategy for the stable operation of multilevel converter topologies in DG technology

E. Pouresmaeil, M. Mehrasa, J. Catalão
{"title":"Control strategy for the stable operation of multilevel converter topologies in DG technology","authors":"E. Pouresmaeil, M. Mehrasa, J. Catalão","doi":"10.1109/PSCC.2014.7038494","DOIUrl":null,"url":null,"abstract":"A control technique of multilevel converter topologies based on Direct Lyapunov Control method is presented in this paper for integration of Distributed Generation (DG) resources into the power grid. The compensation of instantaneous variations in the reference current components in ac-side and dc-voltage variations of cascaded capacitors in dc-side of the interfacing system are considered properly, which is the main contribution and novelty of this work in comparison with other control strategies. The proposed control technique provides the continuous injection of active power in fundamental frequency from DG sources to the grid. In addition, reactive power and harmonic current components of loads are provided with a fast dynamic response; thereby, achieving sinusoidal grid currents in phase with load voltages, while the required power from load side is more than the maximum capacity of interfaced converter, is possible. Simulation results confirm the effectiveness of the proposed control strategy in DG technology during dynamic and steady-state operating conditions.","PeriodicalId":155801,"journal":{"name":"2014 Power Systems Computation Conference","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Power Systems Computation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PSCC.2014.7038494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A control technique of multilevel converter topologies based on Direct Lyapunov Control method is presented in this paper for integration of Distributed Generation (DG) resources into the power grid. The compensation of instantaneous variations in the reference current components in ac-side and dc-voltage variations of cascaded capacitors in dc-side of the interfacing system are considered properly, which is the main contribution and novelty of this work in comparison with other control strategies. The proposed control technique provides the continuous injection of active power in fundamental frequency from DG sources to the grid. In addition, reactive power and harmonic current components of loads are provided with a fast dynamic response; thereby, achieving sinusoidal grid currents in phase with load voltages, while the required power from load side is more than the maximum capacity of interfaced converter, is possible. Simulation results confirm the effectiveness of the proposed control strategy in DG technology during dynamic and steady-state operating conditions.
DG技术中多电平变换器拓扑稳定运行的控制策略
提出了一种基于直接李雅普诺夫控制方法的多电平变换器拓扑控制技术,用于分布式发电资源与电网的集成。适当考虑了接口系统交流侧参考电流分量瞬时变化的补偿和直流侧级联电容直流电压变化的补偿,这是与其他控制策略相比的主要贡献和新颖之处。所提出的控制技术提供了从DG源向电网连续注入基频有功功率。此外,负载的无功功率和谐波电流分量具有快速的动态响应;因此,当负载侧所需功率大于接口变换器的最大容量时,可以实现与负载电压相相的正弦电网电流。仿真结果验证了该控制策略在动态和稳态工况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信