A Scalable Inference Pipeline for 3D Axon Tracing Algorithms

Benjamin Fenelon, L. Gjesteby, Webster Guan, Juhyuk Park, Kwanghun Chung, L. Brattain
{"title":"A Scalable Inference Pipeline for 3D Axon Tracing Algorithms","authors":"Benjamin Fenelon, L. Gjesteby, Webster Guan, Juhyuk Park, Kwanghun Chung, L. Brattain","doi":"10.1109/HPEC55821.2022.9926403","DOIUrl":null,"url":null,"abstract":"High inference times of machine learning-based axon tracing algorithms pose a significant challenge to the practical analysis and interpretation of large-scale brain imagery. This paper explores a distributed data pipeline that employs a SLURM-based job array to run multiple machine learning algorithm predictions simultaneously. Image volumes were split into N (1–16) equal chunks that are each handled by a unique compute node and stitched back together into a single 3D prediction. Preliminary results comparing the inference speed of 1 versus 16 node job arrays demonstrated a 90.95% decrease in compute time for 32 GB input volume and 88.41% for 4 GB input volume. The general pipeline may serve as a baseline for future improved implementations on larger input volumes which can be tuned to various application domains.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High inference times of machine learning-based axon tracing algorithms pose a significant challenge to the practical analysis and interpretation of large-scale brain imagery. This paper explores a distributed data pipeline that employs a SLURM-based job array to run multiple machine learning algorithm predictions simultaneously. Image volumes were split into N (1–16) equal chunks that are each handled by a unique compute node and stitched back together into a single 3D prediction. Preliminary results comparing the inference speed of 1 versus 16 node job arrays demonstrated a 90.95% decrease in compute time for 32 GB input volume and 88.41% for 4 GB input volume. The general pipeline may serve as a baseline for future improved implementations on larger input volumes which can be tuned to various application domains.
三维轴突跟踪算法的可扩展推理管道
基于机器学习的轴突跟踪算法的高推理时间对大规模脑图像的实际分析和解释提出了重大挑战。本文探讨了一种分布式数据管道,该管道采用基于slurm的作业阵列同时运行多个机器学习算法预测。图像卷被分成N(1-16)个相等的块,每个块由一个唯一的计算节点处理,并拼接在一起形成一个单一的3D预测。比较1节点和16节点作业阵列的推理速度的初步结果表明,32 GB输入量和4 GB输入量的计算时间分别减少了90.95%和88.41%。通用管道可以作为将来在更大的输入量上改进实现的基线,这些输入量可以调优到各种应用程序领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信