Benjamin Fenelon, L. Gjesteby, Webster Guan, Juhyuk Park, Kwanghun Chung, L. Brattain
{"title":"A Scalable Inference Pipeline for 3D Axon Tracing Algorithms","authors":"Benjamin Fenelon, L. Gjesteby, Webster Guan, Juhyuk Park, Kwanghun Chung, L. Brattain","doi":"10.1109/HPEC55821.2022.9926403","DOIUrl":null,"url":null,"abstract":"High inference times of machine learning-based axon tracing algorithms pose a significant challenge to the practical analysis and interpretation of large-scale brain imagery. This paper explores a distributed data pipeline that employs a SLURM-based job array to run multiple machine learning algorithm predictions simultaneously. Image volumes were split into N (1–16) equal chunks that are each handled by a unique compute node and stitched back together into a single 3D prediction. Preliminary results comparing the inference speed of 1 versus 16 node job arrays demonstrated a 90.95% decrease in compute time for 32 GB input volume and 88.41% for 4 GB input volume. The general pipeline may serve as a baseline for future improved implementations on larger input volumes which can be tuned to various application domains.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High inference times of machine learning-based axon tracing algorithms pose a significant challenge to the practical analysis and interpretation of large-scale brain imagery. This paper explores a distributed data pipeline that employs a SLURM-based job array to run multiple machine learning algorithm predictions simultaneously. Image volumes were split into N (1–16) equal chunks that are each handled by a unique compute node and stitched back together into a single 3D prediction. Preliminary results comparing the inference speed of 1 versus 16 node job arrays demonstrated a 90.95% decrease in compute time for 32 GB input volume and 88.41% for 4 GB input volume. The general pipeline may serve as a baseline for future improved implementations on larger input volumes which can be tuned to various application domains.