Classification of Hand Movements by Surface Myoelectric Signal Using Artificial-Spiking Neural Network Model

Anand Kumar Mukhopadhyay, I. Chakrabarti, M. Sharad
{"title":"Classification of Hand Movements by Surface Myoelectric Signal Using Artificial-Spiking Neural Network Model","authors":"Anand Kumar Mukhopadhyay, I. Chakrabarti, M. Sharad","doi":"10.1109/ICSENS.2018.8589757","DOIUrl":null,"url":null,"abstract":"Real-time classification of the myoelectric signal has applications in the field of neuro-rehabilitation systems such as prosthesis. The classifier which is a human-computer-interaction (HCI) controller should be ideally fast and computationally less intensive. In this work, we have done a simulation-based study to estimate the performance of a deep artificial/spiking neural network (ANN) model for classification. The model parameters are tuned for a subject to get a 93.33 % and 89.39 % classification accuracy using the ANN and SNN classifiers respectively. A comparison between the two classifiers is studied in terms of computational complexity, external noise effect and trained parameters approximation.","PeriodicalId":405874,"journal":{"name":"2018 IEEE SENSORS","volume":"R-32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2018.8589757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Real-time classification of the myoelectric signal has applications in the field of neuro-rehabilitation systems such as prosthesis. The classifier which is a human-computer-interaction (HCI) controller should be ideally fast and computationally less intensive. In this work, we have done a simulation-based study to estimate the performance of a deep artificial/spiking neural network (ANN) model for classification. The model parameters are tuned for a subject to get a 93.33 % and 89.39 % classification accuracy using the ANN and SNN classifiers respectively. A comparison between the two classifiers is studied in terms of computational complexity, external noise effect and trained parameters approximation.
基于人工脉冲神经网络模型的表面肌电信号手部运动分类
肌电信号的实时分类在假肢等神经康复系统中有着广泛的应用。分类器作为一种人机交互(HCI)控制器,理想情况下应该是速度快,计算量少。在这项工作中,我们做了一个基于仿真的研究来估计深度人工/峰值神经网络(ANN)模型的分类性能。对一个主题的模型参数进行了调整,使用ANN和SNN分类器分别获得了93.33%和89.39%的分类准确率。从计算复杂度、外部噪声影响和训练参数逼近等方面对两种分类器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信