On the Estimation of Behavioral Macroeconomic Models via Simulated Maximum Likelihood

J. Kukacka, Tae-Seok Jang, Stephen Sacht
{"title":"On the Estimation of Behavioral Macroeconomic Models via Simulated Maximum Likelihood","authors":"J. Kukacka, Tae-Seok Jang, Stephen Sacht","doi":"10.2139/ssrn.3299450","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the simulated maximum likelihood method for identifying behavioral heuristics of heterogeneous agents in the baseline three-equation New Keynesian model. The method is extended to multivariate macroeconomic optimization problems, and the estimation pro-cedure is applied to empirical data sets. This approach considerably relaxes restrictive theoretical assumptions and enables a novel estimation of the intensity of choice parameter in discrete choice. In Monte Carlo simulations, we analyze the properties and behavior of the estimation method, which provides important information on the behavioral parameters of the New Keynesian model. However, the curse of dimensionality arises via a consistent downward bias for idiosyncratic shocks. Our empirical results show that the forward-looking version of both the behavioral and the rational model specifications exhibits good performance. We identify potential sources of misspecification for the hybrid version. A novel feature of our analysis is that we pin down the switching parameter for the intensity of choice for the Euro Area and US economy.","PeriodicalId":330048,"journal":{"name":"Macroeconomics: Aggregative Models eJournal","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macroeconomics: Aggregative Models eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3299450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we introduce the simulated maximum likelihood method for identifying behavioral heuristics of heterogeneous agents in the baseline three-equation New Keynesian model. The method is extended to multivariate macroeconomic optimization problems, and the estimation pro-cedure is applied to empirical data sets. This approach considerably relaxes restrictive theoretical assumptions and enables a novel estimation of the intensity of choice parameter in discrete choice. In Monte Carlo simulations, we analyze the properties and behavior of the estimation method, which provides important information on the behavioral parameters of the New Keynesian model. However, the curse of dimensionality arises via a consistent downward bias for idiosyncratic shocks. Our empirical results show that the forward-looking version of both the behavioral and the rational model specifications exhibits good performance. We identify potential sources of misspecification for the hybrid version. A novel feature of our analysis is that we pin down the switching parameter for the intensity of choice for the Euro Area and US economy.
用模拟最大似然法估计行为宏观经济模型
在本文中,我们介绍了模拟最大似然方法来识别异质主体的行为启发式的基线三方程新凯恩斯模型。将该方法推广到多元宏观经济优化问题,并将估计过程应用于经验数据集。这种方法大大放宽了限制性的理论假设,使离散选择中选择参数强度的新估计成为可能。在蒙特卡罗模拟中,我们分析了估计方法的性质和行为,这为新凯恩斯模型的行为参数提供了重要信息。然而,维度的诅咒是通过对特殊冲击的一贯向下偏好而产生的。实证结果表明,前瞻性的行为模型规范和理性模型规范均表现出良好的绩效。我们确定了混合版本的潜在错误说明来源。我们分析的一个新颖之处在于,我们确定了欧元区和美国经济选择强度的切换参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信