Distributionally Robust Co-Optimization of Energy and Reserve Dispatch of Integrated Electricity and Heat System

Mikhail Skalyga, Quiwei Wu
{"title":"Distributionally Robust Co-Optimization of Energy and Reserve Dispatch of Integrated Electricity and Heat System","authors":"Mikhail Skalyga, Quiwei Wu","doi":"10.1109/PMAPS47429.2020.9183678","DOIUrl":null,"url":null,"abstract":"The combined operation of integrated energy systems is increasingly becoming a crucial topic for renewable energy dominated power systems operation. Flexibility from the district heating system could be used to deal with the uncertainty of renewable energy sources. We formulate a distributionally robust optimization problem for co-optimizing energy and reserve dispatch of the integrated electricity and heating system with a moment-based ambiguity set. The reserve allocation has been modeled through the participation vectors of the controllable generation units. The total reserve capacity has been defined implicitly and is a function of the uncertainty. The proposed model has been transformed into a second-order cone programming (SOCP) optimization problem by applying convex relaxation and linearization of the district heating network equations. Case studies on the integrated six-bus and seven-node system to demonstrate the efficacy of the proposed model.","PeriodicalId":126918,"journal":{"name":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS47429.2020.9183678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The combined operation of integrated energy systems is increasingly becoming a crucial topic for renewable energy dominated power systems operation. Flexibility from the district heating system could be used to deal with the uncertainty of renewable energy sources. We formulate a distributionally robust optimization problem for co-optimizing energy and reserve dispatch of the integrated electricity and heating system with a moment-based ambiguity set. The reserve allocation has been modeled through the participation vectors of the controllable generation units. The total reserve capacity has been defined implicitly and is a function of the uncertainty. The proposed model has been transformed into a second-order cone programming (SOCP) optimization problem by applying convex relaxation and linearization of the district heating network equations. Case studies on the integrated six-bus and seven-node system to demonstrate the efficacy of the proposed model.
电热一体化系统能量与储备调度的分布式鲁棒协同优化
综合能源系统的联合运行日益成为以可再生能源为主的电力系统运行的重要课题。区域供热系统的灵活性可以用来处理可再生能源的不确定性。提出了一个基于矩基模糊集的电力供热一体化系统能量和储备调度协同优化的分布鲁棒优化问题。利用可控发电机组的参与向量建立了备用分配模型。总储备容量是隐式定义的,是不确定性的函数。通过对区域供热网络方程进行凸松弛和线性化处理,将该模型转化为二阶锥规划优化问题。以六总线七节点集成系统为例,验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信