An Examination of Genre Attributes for Web Page Classification

Lei Dong, C. Watters, Jack Duffy, M. Shepherd
{"title":"An Examination of Genre Attributes for Web Page Classification","authors":"Lei Dong, C. Watters, Jack Duffy, M. Shepherd","doi":"10.1109/HICSS.2008.53","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a set of experiments to examine the effect of various attributes of web genre on the automatic identification of the genre of web pages. Four different genres are used in the data set, namely, FAQ, News, E-Shopping and Personal Home Pages. The effects of the number of features used to represent the web pages (5, 20, or 100) as well as the types of attributes, <content, form, functionality>, singly and in various combinations are examined. The results indicate that fewer features produce better precision but more features produce better recall, and that attributes in combinations will always perform better than single attributes.","PeriodicalId":328874,"journal":{"name":"Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2008.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

In this paper, we describe a set of experiments to examine the effect of various attributes of web genre on the automatic identification of the genre of web pages. Four different genres are used in the data set, namely, FAQ, News, E-Shopping and Personal Home Pages. The effects of the number of features used to represent the web pages (5, 20, or 100) as well as the types of attributes, , singly and in various combinations are examined. The results indicate that fewer features produce better precision but more features produce better recall, and that attributes in combinations will always perform better than single attributes.
网页分类中体裁属性的检验
在本文中,我们描述了一组实验,以检验网页类型的各种属性对网页类型自动识别的影响。数据集中使用了四种不同的类型,分别是FAQ、News、E-Shopping和Personal Home Pages。用于表示网页(5个、20个或100个)的特征数量的影响,以及属性的类型,单个和各种组合进行了检查。结果表明,特征越少,准确率越高,特征越多,召回率越高,组合属性总是比单一属性表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信