Sentiment Analysis using Deep Learning on GPU

S. Kolekar, H. Khanuja
{"title":"Sentiment Analysis using Deep Learning on GPU","authors":"S. Kolekar, H. Khanuja","doi":"10.1109/PUNECON.2018.8745401","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is performed using deep learning approach on airline tweet dataset on GPU and CPU. The tweet airline dataset is downloaded from internet. In word embedding technique, we represent the text with word vector by mapping tweet's token to already pre-trained word vector like APNews corpus. We split the word vector airline dataset into training and testing dataset and build the proposed model. We feed such word vectors to deep learning model like convolutional neural network and analyze the given tweet as either positive or negative opinion. The proposed model is trained using training dataset and trained model is used to validate the testing dataset on GPU and CPU. The experiment on GPU is helpful for parallel and speedup computing. We got the training accuracy 98% and testing accuracy 90% of airline tweet dataset on GPU.","PeriodicalId":166677,"journal":{"name":"2018 IEEE Punecon","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Punecon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PUNECON.2018.8745401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sentiment analysis is performed using deep learning approach on airline tweet dataset on GPU and CPU. The tweet airline dataset is downloaded from internet. In word embedding technique, we represent the text with word vector by mapping tweet's token to already pre-trained word vector like APNews corpus. We split the word vector airline dataset into training and testing dataset and build the proposed model. We feed such word vectors to deep learning model like convolutional neural network and analyze the given tweet as either positive or negative opinion. The proposed model is trained using training dataset and trained model is used to validate the testing dataset on GPU and CPU. The experiment on GPU is helpful for parallel and speedup computing. We got the training accuracy 98% and testing accuracy 90% of airline tweet dataset on GPU.
基于GPU的深度学习情感分析
利用深度学习方法在GPU和CPU上对航空公司推特数据集进行情感分析。推特航空公司数据集是从互联网下载的。在词嵌入技术中,我们通过将tweet的标记映射到APNews语料库等已经预先训练好的词向量来表示文本。我们将词向量航空数据集拆分为训练数据集和测试数据集,并构建了提出的模型。我们将这些词向量输入卷积神经网络等深度学习模型,并将给定的推文分析为积极或消极的观点。利用训练数据集对模型进行训练,并利用训练模型在GPU和CPU上对测试数据集进行验证。在GPU上的实验有助于并行和加速计算。我们在GPU上得到了航空公司推特数据集的训练准确率98%,测试准确率90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信