Preserving Text Content from Historical Handwritten Documents

Arpita Chakraborty, M. Blumenstein
{"title":"Preserving Text Content from Historical Handwritten Documents","authors":"Arpita Chakraborty, M. Blumenstein","doi":"10.1109/DAS.2016.77","DOIUrl":null,"url":null,"abstract":"We propose a holistic, dynamic method to preserve text content with zero tolerance while removing marginal noise for historical handwritten document images. The key idea is to identify and analyze the region between the sharp peak at the edge and page frame of the text content at each margin. Depending on the proximity of the sharp peak to the text, the text content is then extracted from the document image. This method automatically adapts thresholds for each single document image and is directly applicable to gray-scale images. The proposed method is evaluated on four diverse handwritten historical datasets: Queensland State Archive (QSA), Saint Gall, Parzival and the Prosecution Project. Experimental results show that the proposed method achieves higher accuracy compared with other methods tested on the Saint Gall and Parzival datasets, whilst for the other two Australian datasets, which have been introduced here for the first time, the results are very encouraging.","PeriodicalId":197359,"journal":{"name":"2016 12th IAPR Workshop on Document Analysis Systems (DAS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th IAPR Workshop on Document Analysis Systems (DAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2016.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We propose a holistic, dynamic method to preserve text content with zero tolerance while removing marginal noise for historical handwritten document images. The key idea is to identify and analyze the region between the sharp peak at the edge and page frame of the text content at each margin. Depending on the proximity of the sharp peak to the text, the text content is then extracted from the document image. This method automatically adapts thresholds for each single document image and is directly applicable to gray-scale images. The proposed method is evaluated on four diverse handwritten historical datasets: Queensland State Archive (QSA), Saint Gall, Parzival and the Prosecution Project. Experimental results show that the proposed method achieves higher accuracy compared with other methods tested on the Saint Gall and Parzival datasets, whilst for the other two Australian datasets, which have been introduced here for the first time, the results are very encouraging.
保存历史手写文件中的文本内容
我们提出了一种整体的、动态的方法来零容忍地保留文本内容,同时去除历史手写文档图像的边缘噪声。关键思想是识别和分析文本内容在每个页边距的边缘尖峰和页面框架之间的区域。根据尖锐峰值与文本的接近程度,然后从文档图像中提取文本内容。该方法可自动调整单个文档图像的阈值,并直接适用于灰度图像。所提出的方法在四个不同的手写历史数据集上进行了评估:昆士兰州立档案馆(QSA)、Saint Gall、Parzival和起诉项目。实验结果表明,本文提出的方法在Saint Gall和Parzival数据集上取得了较高的精度,而在本文首次介绍的另外两个澳大利亚数据集上取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信