Heading Estimation Based on Magnetometer Measurement using LSTM

Teguh Satrio Wibowo, P. Rusmin
{"title":"Heading Estimation Based on Magnetometer Measurement using LSTM","authors":"Teguh Satrio Wibowo, P. Rusmin","doi":"10.1109/ICITSI56531.2022.9970976","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles require the development of sensing technologies and intelligent control of localization capabilities to guide the vehicle in unknown areas. A reliable localization system of accurate positioning and heading information is one of the critical requirements of highly challenging autonomous vehicle technology. This paper proposes an accurate estimation scheme using a Recurrent Neural Network (RNN) architecture for mobile robots in indoor environments via an Inertial Measurement Unit (IMU). The main objective is to assess the potential performance of LSTM or GRU network architecture to obtain estimation values using only low-cost IMU sensor data to create accurate heading angles. The preprocessing stage is carried out to be able to reduce or even eliminate the bad impact of noise generated on each data. The test shows that the model generated from the LSTM network architecture with 32-16 cells of neurons layer can provide heading estimates with MSE value of 0.02 and an accuracy 94.65%.","PeriodicalId":439918,"journal":{"name":"2022 International Conference on Information Technology Systems and Innovation (ICITSI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Information Technology Systems and Innovation (ICITSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITSI56531.2022.9970976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous vehicles require the development of sensing technologies and intelligent control of localization capabilities to guide the vehicle in unknown areas. A reliable localization system of accurate positioning and heading information is one of the critical requirements of highly challenging autonomous vehicle technology. This paper proposes an accurate estimation scheme using a Recurrent Neural Network (RNN) architecture for mobile robots in indoor environments via an Inertial Measurement Unit (IMU). The main objective is to assess the potential performance of LSTM or GRU network architecture to obtain estimation values using only low-cost IMU sensor data to create accurate heading angles. The preprocessing stage is carried out to be able to reduce or even eliminate the bad impact of noise generated on each data. The test shows that the model generated from the LSTM network architecture with 32-16 cells of neurons layer can provide heading estimates with MSE value of 0.02 and an accuracy 94.65%.
基于LSTM磁强计测量的航向估计
自动驾驶汽车需要发展传感技术和智能控制定位能力,以引导车辆在未知区域行驶。具有准确定位和航向信息的可靠定位系统是高度挑战性的自动驾驶汽车技术的关键要求之一。本文提出了一种基于循环神经网络(RNN)架构的室内环境下移动机器人惯性测量单元(IMU)的精确估计方案。主要目标是评估LSTM或GRU网络架构的潜在性能,仅使用低成本的IMU传感器数据获得估计值,以创建准确的航向角。进行预处理阶段是为了能够减少甚至消除噪声对每个数据产生的不良影响。实验表明,在32-16个神经元层的LSTM网络结构中生成的模型可以提供MSE值为0.02,准确率为94.65%的航向估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信