Transfer Learning for Human Activities Classification Using Micro-Doppler Spectrograms

Hao Du, Yuan He, T. Jin
{"title":"Transfer Learning for Human Activities Classification Using Micro-Doppler Spectrograms","authors":"Hao Du, Yuan He, T. Jin","doi":"10.1109/COMPEM.2018.8496654","DOIUrl":null,"url":null,"abstract":"Human activities classification has drawn great attention due to its potential applications in security, surveillance and gesture-based interface. The movements of the human body and limbs result in unique micro-Doppler features which can be exploited for identification of human behavior. In this work, we propose a transfer-learned residual network to classify human activities based on micro-Doppler spectrograms. The residual network (ResNet) is pre-trained on ImageNet and fine-tuned on an empirical non-parametric human model using Motion Capture Database. Compared with typical CNN from scratch, this ResNet-based method requires shorter epochs (within 50 epochs) and achieves higher accuracy (rise nearly 6% on the average classification accuracy) for micro-Doppler spectrograms classification. Apart from statistical evaluation, we implement guided backpropagation method and t-Distributed Stochastic Neighbor Embedding (t-SNE) technique to visualize the transfer learning of residual network using spectrograms.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Human activities classification has drawn great attention due to its potential applications in security, surveillance and gesture-based interface. The movements of the human body and limbs result in unique micro-Doppler features which can be exploited for identification of human behavior. In this work, we propose a transfer-learned residual network to classify human activities based on micro-Doppler spectrograms. The residual network (ResNet) is pre-trained on ImageNet and fine-tuned on an empirical non-parametric human model using Motion Capture Database. Compared with typical CNN from scratch, this ResNet-based method requires shorter epochs (within 50 epochs) and achieves higher accuracy (rise nearly 6% on the average classification accuracy) for micro-Doppler spectrograms classification. Apart from statistical evaluation, we implement guided backpropagation method and t-Distributed Stochastic Neighbor Embedding (t-SNE) technique to visualize the transfer learning of residual network using spectrograms.
基于微多普勒谱图的人类活动分类迁移学习
人类活动分类由于其在安防、监控和基于手势的界面等方面的潜在应用而备受关注。人体和四肢的运动产生独特的微多普勒特征,可用于识别人类行为。在这项工作中,我们提出了一种基于微多普勒谱图的迁移学习残差网络来对人类活动进行分类。残差网络(ResNet)在ImageNet上进行预训练,并使用动作捕捉数据库对经验非参数人体模型进行微调。与典型的从头开始的CNN相比,这种基于resnet的方法对微多普勒谱图的分类精度更高(平均分类精度提高近6%),需要更短的epoch (50 epoch以内)。除了统计评估外,我们还采用了引导反向传播方法和t分布随机邻居嵌入(t-SNE)技术,利用谱图可视化残差网络的迁移学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信