{"title":"Reconciling Graphs and Sets of Sets","authors":"M. Mitzenmacher, Tom Morgan","doi":"10.1145/3196959.3196988","DOIUrl":null,"url":null,"abstract":"We explore a generalization of set reconciliation, where the goal is to reconcile sets of sets. Alice and Bob each have a parent set consisting of s child sets, each containing at most h elements from a universe of size u. They want to reconcile their sets of sets in a scenario where the total number of differences between all of their child sets (under the minimum difference matching between their child sets) is d. We give several algorithms for this problem, and discuss applications to reconciliation problems on graphs, databases, and collections of documents. We specifically focus on graph reconciliation, providing protocols based on sets of sets reconciliation for random graphs from G(n,p) and for forests of rooted trees.","PeriodicalId":344370,"journal":{"name":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3196959.3196988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We explore a generalization of set reconciliation, where the goal is to reconcile sets of sets. Alice and Bob each have a parent set consisting of s child sets, each containing at most h elements from a universe of size u. They want to reconcile their sets of sets in a scenario where the total number of differences between all of their child sets (under the minimum difference matching between their child sets) is d. We give several algorithms for this problem, and discuss applications to reconciliation problems on graphs, databases, and collections of documents. We specifically focus on graph reconciliation, providing protocols based on sets of sets reconciliation for random graphs from G(n,p) and for forests of rooted trees.