NCAM: Near-Data Processing for Nearest Neighbor Search

Carlo C. del Mundo, Vincent T. Lee, L. Ceze, M. Oskin
{"title":"NCAM: Near-Data Processing for Nearest Neighbor Search","authors":"Carlo C. del Mundo, Vincent T. Lee, L. Ceze, M. Oskin","doi":"10.1145/2818950.2818984","DOIUrl":null,"url":null,"abstract":"Emerging classes of computer vision applications demand unprecedented computational resources and operate on large amounts of data. In particular, k-nearest neighbors (kNN), a cornerstone algorithm in these applications, incurs significant data movement. To address this challenge, the underlying architecture and memory subsystems must vertically evolve to address memory bandwidth and compute demands. To enable large-scale computer vision, we propose a new class of associative memories called NCAMs which encapsulate logic with memory to accelerate k-nearest neighbors. We estimate that NCAMs can improve the performance of kNN by orders of magnitude over the best off-the-shelf software libraries (e.g., FLANN) and commodity platforms (e.g., GPUs).","PeriodicalId":389462,"journal":{"name":"Proceedings of the 2015 International Symposium on Memory Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Symposium on Memory Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818950.2818984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Emerging classes of computer vision applications demand unprecedented computational resources and operate on large amounts of data. In particular, k-nearest neighbors (kNN), a cornerstone algorithm in these applications, incurs significant data movement. To address this challenge, the underlying architecture and memory subsystems must vertically evolve to address memory bandwidth and compute demands. To enable large-scale computer vision, we propose a new class of associative memories called NCAMs which encapsulate logic with memory to accelerate k-nearest neighbors. We estimate that NCAMs can improve the performance of kNN by orders of magnitude over the best off-the-shelf software libraries (e.g., FLANN) and commodity platforms (e.g., GPUs).
NCAM:最近邻居搜索的近数据处理
新兴类别的计算机视觉应用需要前所未有的计算资源,并在大量数据上运行。特别是,这些应用程序中的基础算法k-最近邻(kNN)会导致大量数据移动。为了应对这一挑战,底层架构和内存子系统必须垂直发展,以解决内存带宽和计算需求。为了实现大规模的计算机视觉,我们提出了一类新的称为ncam的联想记忆,它将逻辑封装在内存中以加速k近邻。我们估计ncam可以将kNN的性能提高几个数量级,超过最好的现成软件库(例如FLANN)和商品平台(例如gpu)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信