{"title":"A randomized multivariate matrix pencil method for superresolution microscopy","authors":"M. Ehler, Stefan Kunis, T. Peter, C. Richter","doi":"10.1553/ETNA_VOL51S63","DOIUrl":null,"url":null,"abstract":"The matrix pencil method is an eigenvalue based approach for the parameter identification of sparse exponential sums. We derive a reconstruction algorithm for multivariate exponential sums that is based on simultaneous diagonalization. Randomization is used and quantified to reduce the simultaneous diagonalization to the eigendecomposition of a single random matrix. To verify feasibility, the algorithm is applied to synthetic and experimental fluorescence microscopy data.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/ETNA_VOL51S63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The matrix pencil method is an eigenvalue based approach for the parameter identification of sparse exponential sums. We derive a reconstruction algorithm for multivariate exponential sums that is based on simultaneous diagonalization. Randomization is used and quantified to reduce the simultaneous diagonalization to the eigendecomposition of a single random matrix. To verify feasibility, the algorithm is applied to synthetic and experimental fluorescence microscopy data.