Two-state self-stabilizing algorithms

M. Flatebo, A. Datta
{"title":"Two-state self-stabilizing algorithms","authors":"M. Flatebo, A. Datta","doi":"10.1109/IPPS.1992.223047","DOIUrl":null,"url":null,"abstract":"A distributed system consists of a set of loosely connected state machines which do not share a global memory. All the possible global states of the system can be split up into legal and illegal states. A self-stabilizing system is a network of processors, which, when started from an arbitrary (and possibly illegal) initial state, always returns to a legal state in a finite number of steps. One issue in designing self-stabilizing algorithms is the number of state required by each machine. The paper presents algorithms which will be self-stabilizing while only requiring each machine in the network to have two states. Probability is used in some of the algorithms in order to make this possible. The algorithms are given along with correctness proofs.<<ETX>>","PeriodicalId":340070,"journal":{"name":"Proceedings Sixth International Parallel Processing Symposium","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1992.223047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

A distributed system consists of a set of loosely connected state machines which do not share a global memory. All the possible global states of the system can be split up into legal and illegal states. A self-stabilizing system is a network of processors, which, when started from an arbitrary (and possibly illegal) initial state, always returns to a legal state in a finite number of steps. One issue in designing self-stabilizing algorithms is the number of state required by each machine. The paper presents algorithms which will be self-stabilizing while only requiring each machine in the network to have two states. Probability is used in some of the algorithms in order to make this possible. The algorithms are given along with correctness proofs.<>
二态自稳定算法
分布式系统由一组松散连接的状态机组成,这些状态机不共享全局内存。系统中所有可能的全局状态都可以分为合法状态和非法状态。自稳定系统是一个处理器网络,当从任意(可能是非法的)初始状态启动时,总是在有限的步骤中返回到合法状态。设计自稳定算法的一个问题是每台机器所需的状态数。本文提出了一种自稳定算法,该算法只要求网络中的每台机器具有两种状态。概率在一些算法中被使用,以使这成为可能。给出了算法并给出了正确性证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信