Quick2Insight: A user-friendly framework for interactive rendering of biological image volumes

Yanling Liu, C. Lisle, Jack R. Collins
{"title":"Quick2Insight: A user-friendly framework for interactive rendering of biological image volumes","authors":"Yanling Liu, C. Lisle, Jack R. Collins","doi":"10.1109/BioVis.2011.6094041","DOIUrl":null,"url":null,"abstract":"This paper presents a new framework for simple, interactive volume exploration of biological datasets. We accomplish this by automatically creating dataset-specific transfer functions and utilizing them during direct volume rendering. The proposed method employs a K-Means++ clustering algorithm to classify a two-dimensional histogram created from the input volume. The classification process utilizes spatial and data properties from the volume. Then using properties derived from the classified clusters, our method automatically generates color and opacity transfer functions and presents the user with a high quality initial rendering of the volume data. Our method estimates classification parameters automatically, yet users are also allowed to input or override parameters to utilize pre-existing knowledge of their input data. User input is incorporated through the simple yet intuitive interface for transfer function manipulation included in our framework. Our new interface helps users focus on feature space exploration instead of the usual effort intensive, low-level widget manipulation. We evaluated the framework using three-dimensional medical and biological images. Our preliminary results demonstrate the effectiveness of our method of automating transfer function generation for high quality initial visualization. The proposed approach effectively generates automatic transfer functions and enables users to explore and interact with their data in an intuitive way, without requiring detailed knowledge of computer graphics or rendering techniques. Funded by NCI Contract No. HHSN261200800001E.","PeriodicalId":354473,"journal":{"name":"2011 IEEE Symposium on Biological Data Visualization (BioVis).","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Biological Data Visualization (BioVis).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioVis.2011.6094041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a new framework for simple, interactive volume exploration of biological datasets. We accomplish this by automatically creating dataset-specific transfer functions and utilizing them during direct volume rendering. The proposed method employs a K-Means++ clustering algorithm to classify a two-dimensional histogram created from the input volume. The classification process utilizes spatial and data properties from the volume. Then using properties derived from the classified clusters, our method automatically generates color and opacity transfer functions and presents the user with a high quality initial rendering of the volume data. Our method estimates classification parameters automatically, yet users are also allowed to input or override parameters to utilize pre-existing knowledge of their input data. User input is incorporated through the simple yet intuitive interface for transfer function manipulation included in our framework. Our new interface helps users focus on feature space exploration instead of the usual effort intensive, low-level widget manipulation. We evaluated the framework using three-dimensional medical and biological images. Our preliminary results demonstrate the effectiveness of our method of automating transfer function generation for high quality initial visualization. The proposed approach effectively generates automatic transfer functions and enables users to explore and interact with their data in an intuitive way, without requiring detailed knowledge of computer graphics or rendering techniques. Funded by NCI Contract No. HHSN261200800001E.
Quick2Insight:一个用户友好的框架,用于生物图像卷的交互式渲染
本文提出了一个简单的、交互式的生物数据集探索的新框架。我们通过自动创建特定于数据集的传递函数并在直接体绘制期间利用它们来实现这一点。该方法采用k - means++聚类算法对输入量生成的二维直方图进行分类。分类过程利用了卷的空间和数据属性。然后,利用从分类聚类中获得的属性,我们的方法自动生成颜色和不透明度传递函数,并向用户呈现高质量的体数据初始渲染。我们的方法自动估计分类参数,但也允许用户输入或覆盖参数,以利用其输入数据的预先存在的知识。用户输入通过框架中包含的简单而直观的传递函数操作界面进行整合。我们的新界面可以帮助用户专注于特征空间探索,而不是通常的低层次小部件操作。我们使用三维医学和生物学图像评估该框架。我们的初步结果证明了我们的方法是有效的自动化传递函数生成高质量的初始可视化。所提出的方法有效地生成自动传递函数,使用户能够以直观的方式探索和交互他们的数据,而不需要详细的计算机图形学知识或渲染技术。由NCI合同编号:HHSN261200800001E。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信