{"title":"Systematic cycle budget versus system power trade-off: a new perspective on system exploration of real-time data-dominated applications","authors":"E. Brockmeyer, Arnout Vandecappelle, F. Catthoor","doi":"10.1145/344166.344552","DOIUrl":null,"url":null,"abstract":"In contrast to current design practice for (programmable) processor mapping, which mainly targets performance, we focus on a systematic trade-off between cycle budget and energy consumed in the background memory organization. The latter is a crucial component in many of today's designs, including multimedia, network protocols and telecom signal processing. We have a systematic way and tool to explore both freedoms and to arrive at Pareto charts, in which for a given application the lowest cost implementation of the memory organization is plotted against the available cycle budget per submodule. This by making optimal usage of a parallelized memory architecture. We indicate, with results on a digital audio broadcasting receiver and an image compression demonstrator, how to effectively use the Pareto plot to gain significantly in overall system energy consumption within the global real-time constraints.","PeriodicalId":188020,"journal":{"name":"ISLPED'00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design (Cat. No.00TH8514)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED'00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design (Cat. No.00TH8514)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/344166.344552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
In contrast to current design practice for (programmable) processor mapping, which mainly targets performance, we focus on a systematic trade-off between cycle budget and energy consumed in the background memory organization. The latter is a crucial component in many of today's designs, including multimedia, network protocols and telecom signal processing. We have a systematic way and tool to explore both freedoms and to arrive at Pareto charts, in which for a given application the lowest cost implementation of the memory organization is plotted against the available cycle budget per submodule. This by making optimal usage of a parallelized memory architecture. We indicate, with results on a digital audio broadcasting receiver and an image compression demonstrator, how to effectively use the Pareto plot to gain significantly in overall system energy consumption within the global real-time constraints.