Fast Majorize-Minimization based Super-Resolution Algorithm for Radar Forward-Looking Imaging

Xichen Yin, Lin Liu, Yulin Huang, Mengxi Feng, Yin Zhang, Jianyu Yang
{"title":"Fast Majorize-Minimization based Super-Resolution Algorithm for Radar Forward-Looking Imaging","authors":"Xichen Yin, Lin Liu, Yulin Huang, Mengxi Feng, Yin Zhang, Jianyu Yang","doi":"10.1109/IGARSS46834.2022.9883171","DOIUrl":null,"url":null,"abstract":"Recently, super-resolution techniques have been widely used in real aperture radar superresolution imaging. In this paper, we propose a fast sparse superresolution algorithm which is based on majorize-minimization(MM) method to realize fast superresolution imaging of sparse targets in radar forward-looking area. First, we establish a model of rader forward-looking imaging and analyze the echo signal. Second, we use the majorize-minimization (MM) method to obtain the real target distribution. Due to the expensive computational cost of MM algorithm, we proposed an fast matrix inversion approach which is based on divide and conquer strategy. The superior performance of the proposed method is verified by simulations.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9883171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, super-resolution techniques have been widely used in real aperture radar superresolution imaging. In this paper, we propose a fast sparse superresolution algorithm which is based on majorize-minimization(MM) method to realize fast superresolution imaging of sparse targets in radar forward-looking area. First, we establish a model of rader forward-looking imaging and analyze the echo signal. Second, we use the majorize-minimization (MM) method to obtain the real target distribution. Due to the expensive computational cost of MM algorithm, we proposed an fast matrix inversion approach which is based on divide and conquer strategy. The superior performance of the proposed method is verified by simulations.
基于快速最大最小化的雷达前视成像超分辨率算法
近年来,超分辨技术在真孔径雷达超分辨成像中得到了广泛的应用。为了实现雷达前视区域稀疏目标的快速超分辨成像,提出了一种基于极大极小法的快速稀疏超分辨成像算法。首先,建立雷达前视成像模型,对回波信号进行分析。其次,采用最大-最小(MM)方法得到真实的目标分布。针对MM算法计算量大的问题,提出了一种基于分治策略的快速矩阵反演方法。仿真结果验证了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信