Multi-Objective Optimization of Sampling Algorithms Pipeline for Unbalanced Problems

P. Miranda, R. F. Mello, André C. A. Nascimento, Tapas Si
{"title":"Multi-Objective Optimization of Sampling Algorithms Pipeline for Unbalanced Problems","authors":"P. Miranda, R. F. Mello, André C. A. Nascimento, Tapas Si","doi":"10.1109/CEC55065.2022.9870435","DOIUrl":null,"url":null,"abstract":"The sequencing of sampling algorithms has shown to be a promising approach in generating balanced versions of unbalanced data. Sequencing allows different algorithms of under-sampling and/or over-sampling to be performed in sequence, producing a resulting balanced database. However, defining the most appropriate sequence of sampling algorithms is challenging. This article treats the sequencing problem as a combinatorial optimization task and proposes a multi-objective optimization method to seek promising solutions that maximize the performance of classifiers both in accuracy and in F1-score. The results showed that the proposed method was capable of finding optimized sequences that improved the performance of the classifiers, obtaining statistically better results, mainly in F1- score, when compared with competing methods, in most of the selected unbalanced problems.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The sequencing of sampling algorithms has shown to be a promising approach in generating balanced versions of unbalanced data. Sequencing allows different algorithms of under-sampling and/or over-sampling to be performed in sequence, producing a resulting balanced database. However, defining the most appropriate sequence of sampling algorithms is challenging. This article treats the sequencing problem as a combinatorial optimization task and proposes a multi-objective optimization method to seek promising solutions that maximize the performance of classifiers both in accuracy and in F1-score. The results showed that the proposed method was capable of finding optimized sequences that improved the performance of the classifiers, obtaining statistically better results, mainly in F1- score, when compared with competing methods, in most of the selected unbalanced problems.
不平衡问题采样算法管道的多目标优化
采样算法的排序已被证明是一种有前途的方法,以产生平衡版本的不平衡数据。测序允许不同的欠采样和/或过采样算法依次执行,从而产生一个平衡的数据库。然而,定义最合适的采样算法序列是具有挑战性的。本文将排序问题视为一个组合优化任务,提出了一种多目标优化方法,寻求有希望的解决方案,使分类器在准确率和F1-score上的性能都最大化。结果表明,该方法能够找到优化序列,提高分类器的性能,在大多数选择的不平衡问题上,与竞争方法相比,获得了更好的统计结果,主要是F1-得分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信