Path Planning of Mobile Robot Based on Adaptive Ant Colony Optimization

Xiuqing Yang, Ni Xiong, Yong Xiang, Mingqian Du, Xinzhi Zhou, Yong Liu
{"title":"Path Planning of Mobile Robot Based on Adaptive Ant Colony Optimization","authors":"Xiuqing Yang, Ni Xiong, Yong Xiang, Mingqian Du, Xinzhi Zhou, Yong Liu","doi":"10.1109/IECON48115.2021.9589808","DOIUrl":null,"url":null,"abstract":"In order to solve the problems of slow convergence speed and poor global search ability in mobile robot path planning, an adaptive ant colony optimization algorithm (AACO) is proposed in this paper. First, in the early stage of the ant colony search, adaptive initial pheromone distribution is used to reduce the blindness of ant colony algorithm. Using adaptive pheromone factor and adaptive evaporation factor to improve the role of pheromone in different periods of convergence of ant colony algorithm. Improve the update mechanism of pheromones and use pheromone preferential limited update to reduce the redundancy of pheromones. A novel adaptive pheromone reconstruction mechanism is proposed to improve the global search capability of the ant colony algorithm. Finally, through two random environment experiments, the proposed algorithm has better path planning ability than some similar algorithms and classical ant colony algorithms.","PeriodicalId":443337,"journal":{"name":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON48115.2021.9589808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In order to solve the problems of slow convergence speed and poor global search ability in mobile robot path planning, an adaptive ant colony optimization algorithm (AACO) is proposed in this paper. First, in the early stage of the ant colony search, adaptive initial pheromone distribution is used to reduce the blindness of ant colony algorithm. Using adaptive pheromone factor and adaptive evaporation factor to improve the role of pheromone in different periods of convergence of ant colony algorithm. Improve the update mechanism of pheromones and use pheromone preferential limited update to reduce the redundancy of pheromones. A novel adaptive pheromone reconstruction mechanism is proposed to improve the global search capability of the ant colony algorithm. Finally, through two random environment experiments, the proposed algorithm has better path planning ability than some similar algorithms and classical ant colony algorithms.
基于自适应蚁群优化的移动机器人路径规划
针对移动机器人路径规划中收敛速度慢、全局搜索能力差的问题,提出了一种自适应蚁群优化算法(AACO)。首先,在蚁群搜索的早期阶段,采用自适应初始信息素分布来降低蚁群算法的盲目性。采用自适应信息素因子和自适应蒸发因子来改善信息素在蚁群算法不同收敛期的作用。改进信息素的更新机制,利用信息素优先有限更新来减少信息素的冗余。为了提高蚁群算法的全局搜索能力,提出了一种新的自适应信息素重构机制。最后,通过两次随机环境实验,该算法比一些同类算法和经典蚁群算法具有更好的路径规划能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信