Design of an interpretive environment for Turing

J. Cordy, T. Graham
{"title":"Design of an interpretive environment for Turing","authors":"J. Cordy, T. Graham","doi":"10.1145/29650.29671","DOIUrl":null,"url":null,"abstract":"This paper presents the design of an interpreter structure for modern programming languages such as Turing and Modula II that is modular and highly orthogonal while providing maximal flexibility and efficiency in implementation. At the outermost level, the structure consists of a front end, responsible for interaction with the user, and a back end, responsible for execution. The two are linked by a single database consisting of the tokenized statements of the user program. Interfaces between the major modules of each part are defined in such a way as to maximize reusability, and each interface can service a range of plug-compatible modules implementing radically different semantics. The design accommodates a wide spectrum of interpreter types ranging from batch-oriented compiler-simulators to statement-by-statement interactive execution, and provides for a range of program editing tools from simple line editors through to modern language-directed programming environments. It has served as the basis for several interpretive systems including the production Turing interpreter, the Turing Programming Environment, and the Turing Tool software maintenance tool.","PeriodicalId":414056,"journal":{"name":"SIGPLAN Conferences and Workshops","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGPLAN Conferences and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/29650.29671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents the design of an interpreter structure for modern programming languages such as Turing and Modula II that is modular and highly orthogonal while providing maximal flexibility and efficiency in implementation. At the outermost level, the structure consists of a front end, responsible for interaction with the user, and a back end, responsible for execution. The two are linked by a single database consisting of the tokenized statements of the user program. Interfaces between the major modules of each part are defined in such a way as to maximize reusability, and each interface can service a range of plug-compatible modules implementing radically different semantics. The design accommodates a wide spectrum of interpreter types ranging from batch-oriented compiler-simulators to statement-by-statement interactive execution, and provides for a range of program editing tools from simple line editors through to modern language-directed programming environments. It has served as the basis for several interpretive systems including the production Turing interpreter, the Turing Programming Environment, and the Turing Tool software maintenance tool.
图灵的解释环境设计
本文提出了一种适用于图灵和Modula II等现代编程语言的解释器结构设计,该结构具有模块化和高度正交性,同时在实现上提供了最大的灵活性和效率。在最外层,该结构由前端(负责与用户交互)和后端(负责执行)组成。这两者通过由用户程序的标记化语句组成的单个数据库连接起来。每个部分的主要模块之间的接口都以最大化可重用性的方式定义,并且每个接口都可以服务于一系列实现完全不同语义的插件兼容模块。该设计适应了广泛的解释器类型,从面向批处理的编译模拟器到逐语句的交互式执行,并提供了一系列程序编辑工具,从简单的行编辑器到现代的面向语言的编程环境。它已经作为几个解释系统的基础,包括生产图灵解释器、图灵编程环境和图灵工具软件维护工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信