A Study on Distance Measure for Effective Anomaly Detection using AutoEncoder

Hyunyong Lee, Nac-Woo Kim, Jungi Lee, Byung-Tak Lee
{"title":"A Study on Distance Measure for Effective Anomaly Detection using AutoEncoder","authors":"Hyunyong Lee, Nac-Woo Kim, Jungi Lee, Byung-Tak Lee","doi":"10.1109/ICTC49870.2020.9289177","DOIUrl":null,"url":null,"abstract":"Anomaly detection is a popular application in various areas. One challenging issue is to build an anomaly detection model using normal data because collecting potential abnormal data is quite difficult. In this paper, we build an anomaly detection model using just normal data based on adversarial autoencoder for acoustic data. After extracting features using the trained model, we apply a distance-based method for calculating a threshold to be used for anomaly detection. In particular, we propose a method for reflecting differences in dimensions in calculating distance. Through experiments, we show that the proposed dimension-aware distance measure improves anomaly detection accuracy by up to 7% compared to existing distance measure methods.","PeriodicalId":282243,"journal":{"name":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"311 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC49870.2020.9289177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Anomaly detection is a popular application in various areas. One challenging issue is to build an anomaly detection model using normal data because collecting potential abnormal data is quite difficult. In this paper, we build an anomaly detection model using just normal data based on adversarial autoencoder for acoustic data. After extracting features using the trained model, we apply a distance-based method for calculating a threshold to be used for anomaly detection. In particular, we propose a method for reflecting differences in dimensions in calculating distance. Through experiments, we show that the proposed dimension-aware distance measure improves anomaly detection accuracy by up to 7% compared to existing distance measure methods.
基于自编码器的有效异常检测距离测量研究
异常检测在各个领域都有广泛的应用。一个具有挑战性的问题是使用正常数据构建异常检测模型,因为收集潜在的异常数据非常困难。本文基于对抗性自编码器对声学数据建立了仅使用正常数据的异常检测模型。在使用训练好的模型提取特征后,我们应用基于距离的方法来计算用于异常检测的阈值。特别地,我们提出了一种在计算距离时反映维度差异的方法。通过实验,我们表明,与现有的距离测量方法相比,所提出的维度感知距离测量方法可将异常检测精度提高7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信