{"title":"Nonparametric Motion Feature for Key Frame Extraction in Sports Video","authors":"Li Li, Xiaoqin Zhang, Yangping Wang, Weiming Hu, Peng Fei Zhu","doi":"10.1109/CCPR.2008.43","DOIUrl":null,"url":null,"abstract":"Key frames extraction play an important role in video abstraction. Traditional key frame extraction methods only use color, texture, or shape features to represent a frame, while the motion feature is ignored or inappropriately modeled. Since the motion feature contains a lot of semantic information in video analysis, we propose a compact representation of the dominant motion information for each frame, based on a mean shift analysis procedure. Then, an EMD (Earth mover's distance) is employed as a similarity metric for the represented motion feature. Moreover, we propose a novel temporal k-means clustering algorithm for the key frame extraction, which naturally incorporates the sequential constraint into extracted key frames. Experimental results demonstrate the effectiveness of our approach.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Key frames extraction play an important role in video abstraction. Traditional key frame extraction methods only use color, texture, or shape features to represent a frame, while the motion feature is ignored or inappropriately modeled. Since the motion feature contains a lot of semantic information in video analysis, we propose a compact representation of the dominant motion information for each frame, based on a mean shift analysis procedure. Then, an EMD (Earth mover's distance) is employed as a similarity metric for the represented motion feature. Moreover, we propose a novel temporal k-means clustering algorithm for the key frame extraction, which naturally incorporates the sequential constraint into extracted key frames. Experimental results demonstrate the effectiveness of our approach.