Nonparametric Motion Feature for Key Frame Extraction in Sports Video

Li Li, Xiaoqin Zhang, Yangping Wang, Weiming Hu, Peng Fei Zhu
{"title":"Nonparametric Motion Feature for Key Frame Extraction in Sports Video","authors":"Li Li, Xiaoqin Zhang, Yangping Wang, Weiming Hu, Peng Fei Zhu","doi":"10.1109/CCPR.2008.43","DOIUrl":null,"url":null,"abstract":"Key frames extraction play an important role in video abstraction. Traditional key frame extraction methods only use color, texture, or shape features to represent a frame, while the motion feature is ignored or inappropriately modeled. Since the motion feature contains a lot of semantic information in video analysis, we propose a compact representation of the dominant motion information for each frame, based on a mean shift analysis procedure. Then, an EMD (Earth mover's distance) is employed as a similarity metric for the represented motion feature. Moreover, we propose a novel temporal k-means clustering algorithm for the key frame extraction, which naturally incorporates the sequential constraint into extracted key frames. Experimental results demonstrate the effectiveness of our approach.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Key frames extraction play an important role in video abstraction. Traditional key frame extraction methods only use color, texture, or shape features to represent a frame, while the motion feature is ignored or inappropriately modeled. Since the motion feature contains a lot of semantic information in video analysis, we propose a compact representation of the dominant motion information for each frame, based on a mean shift analysis procedure. Then, an EMD (Earth mover's distance) is employed as a similarity metric for the represented motion feature. Moreover, we propose a novel temporal k-means clustering algorithm for the key frame extraction, which naturally incorporates the sequential constraint into extracted key frames. Experimental results demonstrate the effectiveness of our approach.
运动视频关键帧提取的非参数运动特征
关键帧提取在视频提取中起着重要的作用。传统的关键帧提取方法仅使用颜色、纹理或形状特征来表示帧,而忽略了运动特征或建模不当。由于运动特征在视频分析中包含大量的语义信息,我们提出了一种基于均值移位分析过程的每帧主要运动信息的紧凑表示。然后,采用EMD (Earth mover’s distance)作为表征运动特征的相似度度量。此外,我们提出了一种新的关键帧提取的时间k-均值聚类算法,该算法将序列约束自然地融入到提取的关键帧中。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信